DOI QR코드

DOI QR Code

An Experiment on Bond Behaviours of Reinforcements Embedded in Geopolymer Concrete Using Direct Pull-out Test

직접 인발 시험을 이용한 지오폴리머 콘크리트의 부착 특성 실험

  • Received : 2016.11.30
  • Accepted : 2016.12.20
  • Published : 2016.12.30

Abstract

Geopolymer concrete is a new class of construction materials that has emerged as an alternative to ordinary Portland cement concrete to reduce the emission of $CO_2$ in the production of concrete. Many researches have been carried out on material developments of geopolymer concrete, however a few studies have been reported on the structural use of them. This paper presents an experiment on the bond behaviors of reinforcements embedded in fly ash based geopolymer concrete. The development lengths of reinforcement for various compressive strength levels of geopolymer concrete, 20, 30 and 40 MPa, and reinforcement diameters, 10, 16 and 25 mm, are investigated. Total 27 specimens were manufactured and pull-out test according to EN 10080 was applied to measure the bond strength and slips between concrete and reinforcements. As the compressive strength levels of geopolymer concrete increase, the bond strength between geopolymer concrete and reinforcement increase. The bond strengths decrease as the diameters of reinforcements increase, which is similar in normal concrete. Also, an estimation equation for the basic development length of reinforcement embedded in geopolymer concrete is proposed based on the experimental results in this study.

지오폴리머 콘크리트는 콘크리트 생산과정에서 발생하는 이산화탄소 배출을 감소시킬 수 있는 대안의 하나로 고려되는 새로운 건설재료이다. 지오폴리머 콘크리트의 재료 개발 및 재료 특성 연구는 많이 진행되고 있으나, 이의 구조부재 적용에 대한 연구는 미흡한 실정이다. 이 논문은 지오폴리머 콘크리트에 매입된 철근의 부착특성에 대한 것으로 압축강도 수준 20, 30 및 40MPa 지오폴리머 콘크리트에 대하여 공칭지름 10,16 및 25mm 철근을 매입한 실험체에 대한 연구를 수행하였다. 총 27개의 시험체를 제작하여 EN10080의 규정에 따라 부착강도 및 부착-슬립 관계를 계측한 내용을 정리한 것이다. 실험결과에 따르면, 압축강도 증가에 따라 부착강도가 증가하는 것을 확인하였고, 일반 콘크리트와 유사하게 철근의 지름이 증가함에 따라 부착강도는 감소하였다. 또한, 이 실험의 결과에 근거하여 지오폴리머 콘크리트에 매입된 철근의 기본 정착길이 산정식을 제안하였다.

Keywords

References

  1. ACI 318. (2014). Building Code Requirements for Structural Concrete(ACI318-14).
  2. ACI 408R-03. (2003). Bond and Development of Straight Reinforcing Bars in Tension, ACI Committee 408, 49.
  3. Bakharev, T. (2005). Geopolymeric materials prepared using class F fly ash and elevated temperature curing, Cement and Concrete Research, 35(6), 1224-1232. https://doi.org/10.1016/j.cemconres.2004.06.031
  4. CEB-FIP. (1991). CEB-FIP Model Code 1990, Comite Euro Intemational Du Beton, Paris, 87-109.
  5. CEN. (2005). prEN 10080:2005(E), Annex D(informative) Bond Test for Ribbed and Indented Reinforcing Steel - Pull-out Test.
  6. CEN. (2002). Eurocode 2 : Design of Concrete Structures Part 1 : General Rules and Rules for Buildings.
  7. Ciampi, V., Eligehausen, R., Bertero, V.V., Popov,. E.P. (1982). Analytical Model for Concrete Anchorages of Reinforcing Bars Under Generalized Excitations, Earthquake Engineering Research Center, University of Califirnia, Berkeley, California, 111.
  8. Davidovits, J. (2008). Geopolymer Chemistry and Applications, Institut Geopolymere.
  9. Duxon, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Devevter, J.S.J. (2007). Geopolymer technology : The current state of the art, Journal of Materials Science, 42, 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
  10. fib Task Group Bond Models. (2000). Bond of Reinforcement in Concrete, 7-14.
  11. Hwang, I.W., Park, H.G., Oh, J.E., Kim, C.G. (2011). "Mechanical properties of fly ash-based geopolymer concrete," Proceedings of the Korean Concrete Institute Fall Convention, KCI, 687-688 [in Korean].
  12. Korea Concrete Institute. (2012). Structural Code for Concrete Structures [in Korean].
  13. Korea Institute of Bridge and Structural Engineering. (2015). Design Specification for Highway Bridges(Limit States Design) [in Korean].
  14. Lee, B.C., Jung, S.H., La, J.M., Lew, K.K., Choi, Y.C. (2012). "Flexural bond behavior of fly ash based geopolymer concrete," Proceedings of the Korean Concrete Institute Fall Convention, KCI, 271-272 [in Korean].
  15. Lee, H.J., Suh, J.I., Yoo, S.W. (2016). Bond behavior of concrete according to replacement ratio of fly ash and compressive strength of concrete, Journal of the Recycled Construction Resources Institute, 4(1), 19-24 [in Korean]. https://doi.org/10.14190/JRCR.2016.4.1.019
  16. Oh, B.H., Koh, C.K. (1991). A study on the strength and mechanical characteristics of normal and high-strength fly-ash concretes, Journal of the Korean Concrete Institute, KCI, 3(2), 87-95 [in Korean].
  17. Orangun, C.O., Jirsa, J.O., Breen, J.E. (1977). A reevaluation of test data on development length and splices, ACI Structural Journal, 74(3), 122-144.
  18. RILEM. (1970). Technical Recommendations for the Testing and Use of Construction Materials: RC 6, Bond Test for Reinforcement Steel. 2. Pull-out Test.
  19. Sarker, P.K. (2011). Bond strength of reinforcing steel embedded in fly ash-embedded geopolymer concrete, Materials and Structures, 44(5), 1021-1030. https://doi.org/10.1617/s11527-010-9683-8
  20. Sindhunata, van Deventer, J.S.J., Lukey, G.C., Xu, H. (2006). Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization, Industrial & Engineering Chemistry Research, 45(10), 3559-3568. https://doi.org/10.1021/ie051251p