DOI QR코드

DOI QR Code

The Durability of the Concrete Using Bottom Ash as Fine Aggregate

바텀애시를 잔골재로 사용한 콘크리트의 내구성능에 관한 연구

  • 박승호 (대진대학교 토목환경공학과) ;
  • 이정배 (대진대학교 건설시스템공학과) ;
  • 김성수 (대진대학교 건설시스템공학과)
  • Received : 2016.08.19
  • Accepted : 2016.11.25
  • Published : 2016.12.30

Abstract

This study is about the reuse of bottom ash, which is released as a necessity in thermal power plant. In general, coal-ash are classified as fly-ash, bottom-ash, cinder-ash. Of these, a large amount of fly ash is being recycled as cement substitutes. While, recycling rates of bottom ash are the lowest due to its porosity and high absorption. In this study, the durability of the concrete using bottom ash as a concrete fine aggregate was evaluated. The using level of the bottom ash ranges to step-by-step from 0% to 30%. According to the result of the durability test, regardless of the presence of the bottom ash, freeze-thaw durability could be secured by air entrainment. In case of the resistance to chloride ions penetration, the length change, and the effects on heavy metals, the replacement of bottom ash as fine aggregate was not critical. Although carbonation penetration was higher as the replacement level of bottom ash increased, the experiment showed that it could be possible to use bottom ash as concrete fine aggregate with proper mix design.

본 연구는 화력발전소에서 배출되는 석탄회 중 바텀애시의 재활용에 대한 실험적 연구이다. 석탄회는 일반적으로 플라이애시, 바텀애시, 신더애시 등으로 구분된다. 이 중 플라이애시의 경우 콘크리트 재료 중 시멘트 대체재로 많은 양이 재활용되고 있다. 반면, 바텀애시의 경우 다공성 및 높은 흡수율 등의 특징에 의해 석탄회 중 재활용률이 가장 낮은 실정이다. 이에 본 연구에서는 바텀애시를 콘크리트의 잔골재로 0~30%까지 단계별로 치환하여 제조한 콘크리트에 대한 내구성능을 평가하였다. 바텀애시 잔골재를 사용한 콘크리트의 내구성능 평가 결과, 동결융해의 경우 바텀애시 혼입 유무와 관계없이 적정한 연행공기를 통해 저항성을 확보할 수 있었고 염소이온침투 저항성, 건조수축 및 중금속에 대한 영향을 검토한 결과 바텀애시 혼입량 증가에 따른 영향은 크지 않은 것으로 나타났다. 반면, 탄산화 촉진 실험결과 바텀애시 사용이 증가함에 따라 탄산화 침투가 다소 컸으나 적절한 배합설계를 통해서 바텀애시를 콘크리트 잔골재로 활용하는 것이 가능할 것으로 판단된다.

Keywords

References

  1. Cho, M.S., Song, Y.C., Ryu, G.S., Koh, K.T., Kim, S.W. (2001). "Study on the durability of cement mortar using fly ash," Proceeding of Korean Society of Civil Engineers, Korea, 1-4 [in Korean].
  2. Choi, S.J., Jeong, Y., Oh, B.J., Kim, M.H. (2003). An experimental study on the engineering properties of concrete according to w/c and replacement ratio of bottom ash, Journal of Korea Concrete Institute, 15(6), 840-847 [in Korean]. https://doi.org/10.4334/JKCI.2003.15.6.840
  3. Ghafoori, N., Bucholc, J. (1996). Investigation of lignite-based bottom ash for structural concrete, Journal of Materials in Civil Engineering, (8)3, 128-137. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:3(128)
  4. Jo, B.W., Park, S.K., Kwon, B.Y. (2004). Alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate and its application of concrete, Journal of Korea Concrete Institute, 16(6), 751-757 [in Korean]. https://doi.org/10.4334/JKCI.2004.16.6.751
  5. Kim, J.M., Kwak, E.G., Cho, S.H., Kang, C. (2009a). Decision of optimized mix design for lightweight foamed concrete using bottom ash by statistical procedure, Journal of Korea Concrete Institute, 21(1), 3-11 [in Korean]. https://doi.org/10.4334/JKCI.2009.21.1.003
  6. Kim, S.C., Ahn, S.K. (2009b). Mix design and characteristics of compressive strengths for foam concrete associated with the application of bottom ash, Journal of Korea Concrete Institute, 21(3), 283-290 [in Korean]. https://doi.org/10.4334/JKCI.2009.21.3.283
  7. Kwon, K.J. (2010). Utilization of fly & bottom ash as concrete meterials, Architectural Institute of Korea, 54(2), 46-49 [in Korean].
  8. Lee, J.H., Kim, J.H., Kim, Y.R., Kang, S.P., Choi, S.J., Kim, M.H. (2002). An experimental study on the properties of concrete using bottom ash according to water-cement ratio, Journal of The Korea Institute of Building Construction, 2(1), 57-60 [in Korean].
  9. Meng, J.H., Kim, T.Y., Cho, H.N., Kim, E.Y. (2015). Minimizing Environmental Impact of Ash Treatment in Thermal Power Plants($II$), Korea Environment Institute [in Korean].
  10. Ministry of Environment. (2014). Standard Method of Waste Processing.
  11. Ministry of Trade, Industry and Energy. (2015). Seventh Electricity Supply Plan.
  12. Nasser, K.W., Lai, P.S.H. (1990). Effect of Fly Ash on the Microstructure and Durability of Concrete, In Serviceability and Durability of Construction Materials, 688-697, ASCE.
  13. Singh, M., Siddique, R. (2015). Effect of low-calcium coal bottom ash as fine aggregate on microstructure and properties of concrete, ACI Materials Journal, 112(5).
  14. Song, M.S., Kim, Y.D., Na, C.S., Choi, K.R., Kim, J.H., Kim, M.H. (2003). "An experimental study on properties of mortar using bottom ash," In Proceeding Autumn Conference of the Korea Institute of Building Construction, 3(1), 61-65.
  15. Topcu, I.B., Bilir, T. (2010). Effect of bottom ash as fine aggregate on shrinkage cracking of mortars, ACI Materials Journal, 107(1).
  16. Yuksel, I., Genc, A. (2007). Properties of concrete containing nonground ash and slag as fine aggregate, ACI Materials Journal, 104(4), 397.