DOI QR코드

DOI QR Code

Aggregate Effects on γ-ray Shielding Characteristic and Compressive Strength of Concrete

콘크리트의 감마선 차폐특성 및 압축강도에 대한 골재의 영향

  • Received : 2016.08.03
  • Accepted : 2016.11.28
  • Published : 2016.12.31

Abstract

We observed the ${\gamma}-ray$ shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of $0.371cm^{-1}$ from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a ${\gamma}-ray$ of $^{137}Cs$, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of $3,175kg{\cdot}m^{-3}$. Although the unit weight of the concrete with OSS and OSG was $3,052kg{\cdot}m^{-3}$, which was lower than the maximum unit weight condition by $123kg{\cdot}m^{-3}$, its attenuation coefficient was improved by $0.012cm^{-1}$. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced ${\gamma}-ray$ shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing.

일반골재인 자갈, 모래와 중량골재인 산화 슬래그 및 자철광을 이용하여 5 종류의 콘크리트를 제작하여 감마선 차폐특성과 압축강도를 살펴보았다. 골재는 평균적인 크기에 따라 비교적 작은 크기의 잔 골재와 큰 크기의 굵은 골재로 구분하여 사용하였다. 실험 결과 산화 슬래그 잔 골재와 굵은 골재를 사용한 콘크리트가 일반 골재만을 이용하여 배합한 콘크리트 시편보다 $^{137}Cs$ 감마선에 대해 2% 향상된 감쇠계수인 $0.37cm^{-1}$을 기록하였다. 각 시편들의 단위중량을 측정한 결과 자철광 잔 골재와 산화 슬래그 굵은 골재로 배합한 조건의 단위중량이 가장 높은 $3,175kg{\cdot}m^{-3}$이었다. 산화슬래그를 잔 골재와 굵은 골재로 배합한 조건의 단위중량은 $3,052kg{\cdot}m^{-3}$으로 최대 단위중량 조건보다 $123kg{\cdot}m^{-3}$ 낮았지만 감쇠계수는 오히려 $0.012cm^{-1}$ 향상되었다. 골재들의 화학성분 분석결과 산화 슬래그는 자철광에 비해 마그네슘의 비율은 낮고 칼슘의 비율은 높아 구성에 있어서 차이를 보였다. 따라서 산화슬래그 만을 골재로 사용한 경우 자철광을 잔 골재로 사용한 경우보다 단위중량은 낮았지만 마그네슘과 비교하여 원자번호가 큰 칼슘의 비율이 높아서 감마선 차폐성능이 향상된 것으로 생각된다. 중량골재가 배합된 모든 시편들은 일반 골재를 이용한 콘크리트보다 압축강도가 높았고, 산화슬래그와 자철광의 잔 골재만을 사용한 경우 4주 양생 후 압축강도가 일반 콘크리트에 비해 45% 향상된 50.2 MPa을 기록하였다.

Keywords

References

  1. Q.H. Hu, J.Q. Weng, and J.S. Wang, "Sources of Anthropogenic Radionuclides in the Environment: A Review", J. Environmental Radioactivity, 101(6), 426-437 (2010). https://doi.org/10.1016/j.jenvrad.2008.08.004
  2. J.R. Choi, J.H. Yoon, H.Y. Kang, H.Y. Lee, and S.W. Chung, "Radiation Shielding Analysis of CANDU Spent Fuel Transport Cask", J. Radiat. Protection and Res., 18(2), 27-35 (1993).
  3. H.G. Byeon and J.B. Lee, "Construction of High Density Concrete for Radiation Shield", Korea Concr. Inst., 6(6), 42-50 (1994).
  4. H.S. Lim, H.S. Lee, and J.S. Choi, "Experimental Study on the Development of X-Ray Shielding Concrete Utilizing Electronic Arc Furnace Oxidizing Slag", Architectural Inst. Korea, 27(7), 125-132 (2011).
  5. S. K. Yang, T. S. Um, J. R. Lee, Y. H. Kim, S. I. Wu, and T. B. Kim, "In-Site Application of Heavyweight Concrete for Radiation Shielding", Proc. of Korea Concr. Instit. Conference, 20(2), 577-580, November 7, 2008, Korea.
  6. S. K. Yang, T. S. Um, J. R. Lee, Y. H. Kim, S. I. Wu, and T. B. Kim, "Properties of Heavyweight Concrete for Radiation Shielding", Proc. of Korea Concr. Instit. Conference, 20(2), 561-564, November 7, 2008, Korea.
  7. C.Y. Boo, C.I Chang, and C.Y. Song, "A Study on the Radiation Shielding of Heavyweight Concrete using Magnetite aggregate", Architectural Inst. Korea, 14(3), 345-352 (1998).
  8. M.H. Kharira, M. Takeyeddin, M. Alnassar, and S. Yousef, "Development of Special Radiation Shielding Concretes Using Natural Local Materials and Evaluation of Their Shielding Characteristics", Prog. Nucl. Energy, 50(1), 33-36 (2008). https://doi.org/10.1016/j.pnucene.2007.10.004
  9. W.J. Jeong, "A Study on Measurement of Mass Attenuation Coefficient of Gamma-Ray", Dong-A Univ., (2000).
  10. J.H. Hubbell, "Photon Mass Attenuation and Energyabsorption Coefficients from 1 KeV to 20 MeV", Int. J. Appl. Radiat. Isotop., 33(11), 1269-1290 (1982). https://doi.org/10.1016/0020-708X(82)90248-4
  11. J.H. Hubbell and S. M. Seltzer, "Tables of X-Ray Mass Attenuation Coefficients and Mass Energy- Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92and 48 Additional Substances of Dosimetrist Interest", Radiat. Phys. Division, PML, NIST (1995).
  12. Korean Industrial Standards. December 26 2005. "KS F 2405, Standard Test Method for Compressive Strength of Concrete." Korean Standards Service Network. Accessed July 1 2016. Available from: http://www.kssn.net/StdKS/ks_detail.asp?k1=F&k2=2405&k3=5.
  13. Korean Industrial Standards. November 28 2000. "KS F 2409, Standard Test Method for Unit Weight and Air Content of Fresh Concrete." Korean Standards Service Network. Accessed July 1 2016. Available from: http://www.kssn.net/StdKS/ks_detail.asp?k1=F&k2=2409&k3=7.
  14. Korean Industrial Standards. October 30 2007. "KS F 2402, Method of Test for Slump of Concrete." Korean Standards Service Network. Accessed July 1 2016. Available from: http://www.kssn.net/StdKS/ks_detail.asp?k1=F&k2=2402&k3=5.
  15. C.Y. Song, "A Study on the Radiation Shielding Properties of Heavy Weight Concrete Using Magnetite Aggregate", Korea Concr. Inst., 10(2), 251-258 (1998).

Cited by

  1. 의료용 선형가속기 차폐벽의 두께 산정에 관한 연구 vol.40, pp.2, 2017, https://doi.org/10.17946/jrst.2017.40.2.14
  2. 폐 브라운관(CRT) 유리의 잔골재 대체가 모르타르 시험체의 감마선 차폐에 미치는 영향 vol.23, pp.7, 2016, https://doi.org/10.11112/jksmi.2019.23.7.172
  3. 콘크리트 두께와 자철광 함량에 따른 방탄 성능 평가 vol.20, pp.1, 2016, https://doi.org/10.5345/jkibc.2020.20.1.043