DOI QR코드

DOI QR Code

모델 기반의 이온 전도성 고분자 필름 금속 복합체의 표면적 증가에 따른 전압생성 특성 변화에 관한 연구

Model Based Investigation of Surface Area Effect on the Voltage Generation Characteristics of Ionic Polymer Metal Composite Film

  • Park, Kiwon (Department of Green Automobile Engineering, Youngsan University) ;
  • Kim, Dong Hyun (Department of Mechanical Design Engineering, Youngsan University)
  • 투고 : 2016.11.21
  • 심사 : 2016.12.29
  • 발행 : 2016.12.31

초록

이온성 고분자 복합물인 IPMC(Ionic Polymer Metal Composite)는 얇고 유연한 고분자 필름의 양면에 백금소재의 전극층이 도금된 형태로 구성되어 있다. IPMC는 외부 물리적 자극에 대응하여 전기적 에너지를 발생시키는 특성을 가지고 있기 때문에 주변환경에서 발생하는 진동으로부터 에너지를 획득하는데 응용될 수 있어 신재생에너지 획득 소자로 큰 잠재력을 가지고 있다. 그러나 실용적인 에너지 획득을 위해서는 큰 면적의 IPMC 집적 기술이 필요하다. 본 논문에서는 IPMC의 면적 증가에 따른 출력 전압의 특성 변화에 대한 연구를 수행하기 위하여 다른 면적의 IPMC 샘플들이 사용되었다. 또한 IPMC에서 발생하는 전압과 오프셋 현상을 시뮬레이션 할 수 있는 회로 모델을 사용하여 출력 전압의 추정에 사용하였다. 본 논문에서 제안된 회로 모델이 면적 변화에 따른 출력 전압을 비교적 잘 추정함이 검증되었다.

IPMC is composed of thin ion conductive polymer film sandwiched between metallic electrodes plated on both surfaces. Ionic Polymer-Metal Composite (IPMC) generates voltages when bent by mechanical stimuli. IPMC has a potential for the variety of energy harvesting applications due to its soft and hydrophilic characteristics. However, the large-scale implementation is necessary to increase the output power. In this paper, the scale-up of surface area effect on voltage generation characteristics of IPMC was investigated using IPMC samples with different surface areas. Also, a circuit model simulating both the output voltage and its offset variations was designed for estimating the voltages from IPMC samples. The proposed model simulated the output voltages with offsets well corresponding to various frequencies of input bending motion. However, some samples showed that the increase of error between real and simulated voltages with time due to the nonlinear characteristic of offset variations.

키워드

참고문헌

  1. Falnes, J., "Ocean Waves and Oscillating Systems", Cambridge University Press, Cambridge(UK), 2002.
  2. Cruz, J., Ed., "Ocean Wave Energy: Current Status and Future Perspectives", Springer, Berlin(Germany), 2008.
  3. Salter, S.H., "World Progress in Wave Energy", J. Ambient Energy, Vol. 10, No. 1, 1989, pp. 3-24. https://doi.org/10.1080/01430750.1989.9675119
  4. Evans, D.V., "Power from Water Waves", Fluid Mechanics, Vol. 13, 1981, pp. 157-187. https://doi.org/10.1146/annurev.fl.13.010181.001105
  5. Sjolte, J., Tjensvoll, G., and Molinas, M., "Power Collection from Wave Energy Farms," Appl. Sci., Vol. 3, 2013, pp. 420-436. https://doi.org/10.3390/app3020420
  6. Aureli, M., Prince, C., Porfiri, M., and Peterson, S., "Energy Harvesting from Base Excitation of Ionic Polymer Metal Composites in Fluid Environments", Smart Materials and Structures, Vol. 19, No. 1, 2009, 015003. https://doi.org/10.1088/0964-1726/19/1/015003
  7. Brufau-Penella, J., Puig-Vidal, M., Giannone, P., Graziani, S., and Strazzeri, S., "Characterization of the Harvesting Capability of an Ionic Polymer Metal Composite Device," Vol. 70, No. 1, 2008, 015009.
  8. Park, K., Yoon, M.K., Lee, S., Choi, J., and Thubrikar, M., "Effects of Electrode Degradation and Solvent Evaporation on the Performance of Ionic Polymer-metal Composite Sensors," Smart Materials and Structures, Vol. 19, No. 1, 2010, 075002. https://doi.org/10.1088/0964-1726/19/7/075002
  9. Nemat-Nasser, S., "Micromechanics of Actuation of Ionic Polymer-Metal Composites," Journal of Applied Physics, Vol. 19, No. 1, 2002, pp. 2889-2915.
  10. Shainpoor, M., and Kim, K.J., "Ionic Polymer-Metal Composites: I. Fundamentals," Smart Materials and Structures, Vol. 10, 2001, pp. 819-833. https://doi.org/10.1088/0964-1726/10/4/327
  11. Kim, K.J., and Shainpoor, M., "Ionic Polymer-Metal Composites: II. Manufacturing Techniques," Smart Materials and Structures, Vol. 12, 2003, pp. 65-79. https://doi.org/10.1088/0964-1726/12/1/308
  12. Farinholt, K., and Leo, D., "Modeling of Electromechanical Charge Sensing in Ionic Polymer Transducers", Mechanics of Materials, Vol. 36, No. 5, 2004, pp. 421-433. https://doi.org/10.1016/S0167-6636(03)00069-3
  13. Biddiss, E., and Chau, T., "Electroactive Polymeric Sensors in Hand Prostheses: Bending Response of an Ionic Polymer Metal Composite," Medical Engineering & Physics, Vol. 28, No. 6, 2006, pp. 568-578. https://doi.org/10.1016/j.medengphy.2005.09.009
  14. Chen, Z., Tan, X., Will, A., and Ziel, C., "A Dynamic Model for Ionic Polymer-Metal Composite Sensors," Smart Materials and Structures, Vol. 16, No. 4, 2007, 1477. https://doi.org/10.1088/0964-1726/16/4/063
  15. Paquette, W.J., Kim, J.K., Nam, J.D., and Tak, Y.S., "An Equivalent Circuit Model for Ionic Polymer-Metal Composites and Their Performance Improvement by a Clay-Based Polymer Nano-Composite Technique", J. Intelligent Material Systems and Structures, Vol. 14, 2003, pp. 633-642. https://doi.org/10.1177/104538903038024
  16. Park, K., Lee, H.K., and Kim, M.S., "State Observer Based Moeling of Voltage Generation Characteristic of Ionic Polymer Metal Composite," The Korean Society for Composite Materials, Vol. 28, No. 6, 2015, pp. 383-388.