DOI QR코드

DOI QR Code

경화 거동에 따른 다기능 구조 전해질의 전기적 기계적 특성 연구

Effect of the Curing Behavior on Electrical and Mechanical Properties of Multifunctional Structural Electrolyte

  • Kwon, Suk Jin (Composites Reasearch Division, Korea institute of Materials Science (KIMS)) ;
  • Choi, U Hyeok (Department of Polymer Engineering, Pukyong National University) ;
  • Jung, Byung Mun (Composites Reasearch Division, Korea institute of Materials Science (KIMS)) ;
  • Kim, Yang Do (Department of Polymer Engineering, Pukyong National University) ;
  • Lee, Sang Bok (Composites Reasearch Division, Korea institute of Materials Science (KIMS))
  • 투고 : 2016.10.19
  • 심사 : 2016.11.22
  • 발행 : 2016.12.31

초록

최근에는 이온 전도도의 감소없이 높은 기계적 물성을 가진 구조 복합재를 개발하기 위하여 에폭시 매트릭스를 기반으로 하여 전해질을 함유한 다기능성 구조 전해질에 대한 연구가 활발히 진행 중이다. 구조 전해질의 최적 함량 및 소재 선정에 대해서는 많이 연구되고 있는 반면, 경화 거동에 따른 특성 분석에 관한 연구는 더디게 진행되고 있기 때문에 본 연구에서는 구조 성능과 에너지 저장 성능을 동시에 가진 고체 전해질을 함유한 에폭시 기반의 구조 전해질을 다양한 경화 시간 및 온도에 따라 제조하고 기계적 특성 및 이온 전도도 특성을 측정하였다. 그리하여 전해질의 열 분해가 일어나지 않는 온도 범위 내에서 에폭시가 충분히 경화할 수 있는 경화 조건을 통해 115 MPa와 $6{\times}10^{-5}S/cm$의 값을 동시에 가지는 구조 전해질을 얻었다.

Recently, many research groups have studied on the epoxy-based multifunctional electrolyte to develop the structural composite bearing high mechanical properties without sacrificing the ionic conductivity at the same time. The studies on the optimal content and material selection for structural electrolyte have been published, while its curing behavior has not much analyzed yet. In this study, epoxy-based structural electrolyte containing solid electrolyte was prepared by varying the curing temperature and time. In addition, the ionic conductivities and mechanical properties of specimens were measured. We also find out the optimal hardening condition where the epoxy domain enables to be hardened within the range of temperature at which the thermal decomposition of electrolyte does not occur. Finally, we propose the multifunctional structural electrolyte showing achievable electrical and mechanical properties (282 MPa and $9{\times}10^{-6}S/cm@25^{\circ}C$).

키워드

참고문헌

  1. Shirshova, N., and Bismarck, A., "Structural Supercapacitor Electrolyte Based on Bicontinuous Ionic Liquid-epoxy Resin Systems", Journal of Materials Chemistry A, Vol. 1, 2013, pp. 15300-15309. https://doi.org/10.1039/c3ta13163g
  2. Nguyen, A.M., Dinh, N.P., Cam, Q.M., Sparrman, T., and Irgum, K., "Preparation and Characterization of Sizable Macroporous Epoxy Resin-based Monolithic Supports for Flowthrough Systems", Macromolecules, Vol 32, 2014, pp. 2608-2618
  3. Suleman, M., Kumar, Y., and Hashmi, S.A., "Structural and Electrochemical Properties of Succinonitrile-Based Gel Polymer Electrolytes: Role of Ionic Liquid Addition", Journal of Physical Chemistry B, Vol. 117, 2013, pp. 7436-7443. https://doi.org/10.1021/jp312358x
  4. Kim, S.H., Lee, W.I., and Park, J.M., "Assessment of Dispersion In Carbon Nanotube Reinforced Composites Using Differential Scanning Calorimetry", Carbon, Vol. 47, 2009, pp. 2699-2703. https://doi.org/10.1016/j.carbon.2009.05.026
  5. Nune-Pereira, J., Costa, C.M., and Lanceros-Mendez, S., "Polymer Composites and Blends for Battery Separators: State of the art, Challenges and future trends", Journal of Power Sources, Vol. 281, 2015, pp. 378-398. https://doi.org/10.1016/j.jpowsour.2015.02.010
  6. Choi, J.-H., Ye. Y., Elabd, Y.A. and Winey, K.I., "Network Structure and Strong Microphase Separation for High Ion Conductivity in Polymerized Ionic Liquid Block Copolymers", Macromolecules, Vol. 46, 2013, pp. 5290-5300. https://doi.org/10.1021/ma400562a
  7. Asp, L.E., and Greenhalgh, E.S., "Structural Power Composites", Composites Science and Technology, Vol. 101, 2014, pp. 41-61. https://doi.org/10.1016/j.compscitech.2014.06.020