References
- Dinadayalane, T.C., and Leszczynski, J., "Remarkable Diversity of Carbon-carbon Bonds: Structures and Properties of Fullerenes, Carbon Nanotubes, and Graphene," Structural Chemistry, Vol. 21, Iss. 6, 2010, pp. 1155-1169. https://doi.org/10.1007/s11224-010-9670-2
- Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., and Ruoff, R.S., "Graphene-based Composite Materials," Nature, Vol. 442, No. 7100, 2006, pp. 282-286. https://doi.org/10.1038/nature04969
- Bergmann, D.J., "The Dielectric Constant of a Composite Material - a Problem in Classical Physics", Phys. Rep. Vol. 43, No. 9, 1978, pp. 377-407. https://doi.org/10.1016/0370-1573(78)90009-1
- Wei, C., Wei, X., Kysar, J.W., and Hone, J., "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, Vol. 321, Iss. 5887, 2008, pp. 385-388. https://doi.org/10.1126/science.1157996
- Liu, F., Ming, P., and Li, J., "Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene under Tension", Phys. Rev. B, Vol. 76, Iss. 6, 2007, 064120. https://doi.org/10.1103/PhysRevB.76.064120
- Jiang, J.W., Wang, J.S., and Li, B., "Young's Modulus of Graphene: A Molecular Dynamics Study," Phys. Rev. B, Vol. 80, Iss. 11, 2009, 113405. https://doi.org/10.1103/PhysRevB.80.113405
- Kotakoski, J., and Meyer, J.C., "Mechanical Properties of Polycrystalline Graphene Based on a Realistic Atomistic Model," Phys. Rev. B, Vol. 85 Iss. 19, 2012, 195447. https://doi.org/10.1103/PhysRevB.85.195447
- Mortazavi, B., and Cuniberti, G., "Atomistic Modeling of Mechanical Properties of Polycrystalline Graphene," Nanotechnology, Vol. 25, No. 21, 2014, 215704. https://doi.org/10.1088/0957-4484/25/21/215704
- Sha, Z.D., Quek, S.S., Pei, Q.X., Liu, Z.S., Wang, T.J., Shenoy, V.B., and Zhang, Y.W., "Inverse Pseudo Hall-Petch Relation in Polycrystalline Graphene," Scientific Reports, Vol. 4, 2014, 5991.
- Choi, Y., Park, Y., and Hyun, S., "Mechanical Properties of Nanocrystalline Copper under Thermal Load," Phys. Lett. A, Vol. 376, 2012, pp. 758-762. https://doi.org/10.1016/j.physleta.2011.12.027
- Plimpton, S., Crozier, P., and Thompson, A., "LAMMPS-largescale Atomic/molecular Massively Parallel Simulator," Sandia National Laboratories, 2007 (http://lamps.sandia.gov/).
- Stuart, S.J., Tutein, A.B., and Harrison, J.A., "A Reactive Potential for Hydrocarbons with Intermolecular Interactions," J. Chem. Phys., Vol. 112, No. 14, 2000, pp. 6472-6486. https://doi.org/10.1063/1.481208
- Tuan, D.V., Kumar, A., Roche, S., Ortmann., F., and Thorpe, M.F., "Insulating behavior of an Amorphous Graphene Membrane," Phys. Rev. B, Vol. 86, Iss. 12, 2012, 121408. https://doi.org/10.1103/PhysRevB.86.121408
- Park, Y., and Hyun, S., "Characterizations of Network Structures Using Eigenmode Analysis," Symmetry, Vol. 7, No. 2, 2015, pp. 962-975. https://doi.org/10.3390/sym7020962
Cited by
- Effects of Grain Size Distribution on the Mechanical Properties of Polycrystalline Graphene vol.54, pp.6, 2017, https://doi.org/10.4191/kcers.2017.54.6.10