DOI QR코드

DOI QR Code

A Study on Fracture Behavior of Center Crack at Unidirectional CFRP due to Stacking Angle

적층각도에 따른 단방향 CFRP에서의 중앙 크랙의 파괴 거동에 관한 연구

  • Park, Jae-Woong (Division of Mechanical and Automotive Engineering, Kongju University) ;
  • Cheon, Seong-Sik (Division of Mechanical and Automotive Engineering, Kongju University) ;
  • Cho, Jae-Ung (Division of Mechanical and Automotive Engineering, Kongju University)
  • Received : 2016.11.03
  • Accepted : 2016.12.10
  • Published : 2016.12.31

Abstract

Carbon fiber reinforced plastic (CFRP), one of lightweight materials, is the fiber structure using carbon fiber. It is the composite material that has the characteristics of carbon and plastic. As for the fiber structure, it has the great strength due to fiber direction. CFRP for woven type is used mostly as such a CFRP with lightweight. Woven type is more stable when compared with unidirectional type. On the other hand, woven type is highly priced. Therefore, this study aims to analyze the fiber structure of unidirectional CFRP. In this study, as the stacking angle [0/X/-X/0], X is the variable. This is unidirectional CFRP in which the angle phase of X has been reversed and stacked. By using such a unidirectional CFRP, the analysis model which had a crack at the center as the form of panel with the thickness of 2 mm was used. On analysis, the load is applied on the upper and lower parts being connected with a pin. The damage in the area near center crack was investigated. As for the analysis model, 3D surface model was designed by using CATIA. For CFRP stacking, the stacking direction was determined by using ACP in ANSYS program and the analysis model with two stacks was made. Afterwards, the structural analysis was carried out.

경량화 소재 중 CFRP(Carbon Fiber Reinforced Plastic)는 카본 섬유를 이용한 섬유구조물이다. 카본과 플라스틱의 특성을 갖는 복합소재이다. 섬유구조는 섬유방향으로 큰 강도를 갖는다. 이러한 경량 소재인 CFRP로 가장 많이 사용되는 것은 직조된 CFRP이다. 직조된 CFRP는 단방향 CFRP에 비하여 구조가 안정적이기 때문이다. 단직조된 CFRP는 고가이다. 따라서 본 연구는 단방향 CFRP의 섬유 구조 특성을 파악하고자 하였다. 본 연구에서는 적층각도 [0/X/-X/0]로 X를 변수로 갖는다. X의 각도 위상이 반전되어 적층된 단방향 CFRP이다. 이러한 단방향 CFRP를 이용하여 중앙 크랙을 갖는 두께 2 mm 판재 형태의 해석 모델을 이용하였다. 해석에서는 핀으로 연결된 상부와 하부에서 하중이 가해지고 있으며 중앙 크랙부분에서 파단을 연구한다. 해석 모델은 CATIA를 이용한 3D Surface 모델로 설계하였다. CFRP 적층을 위해, ANSYS프로그램에서 ACP를 이용한 적층 방향을 결정하여 2개의 적층들을 갖는 해석 모델을 만들었다. 이후 구조해석을 진행하였다.

Keywords

References

  1. Boang, S.O., Kim, K.S., Kim, S.H., Song, S.G., and Cho, J.U., "Study on Compression Test of Aluminum Foam and Honeycomb Sandwich Composites", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 12, No. 9, 2011, pp. 3802-3807. https://doi.org/10.5762/KAIS.2011.12.9.3802
  2. Marzi, S., Biel, A., and Stigh, U., "On Experimental Methods to Investigate the Effect of Layer Thickness on the Fracture Behavior of Adhesively Bonded Joints," International Journal of Adhesion and Adhesives, Vol. 31, No. 8, 2011, pp. 840-850. https://doi.org/10.1016/j.ijadhadh.2011.08.004
  3. Jung, J.W., Kim, S.H., Park, J.K., and Lee, W.I., "Research of the Development of the Properties of PLA Composites for Automatic Interior Parts", Korean Society for Composite Materials, Vol. 24, No. 3, 2011, pp. 1-5.
  4. Mohamed, M., Anandan, S., Huo, Z., Birman, V., Volz, J., and Chandrashekhara, K., "Manufacturing and Characterization of Polyurethane Based Sandwich Composite Structures", Composite Structures, Vol. 123, 2015, pp. 169-179. https://doi.org/10.1016/j.compstruct.2014.12.042
  5. Paul, A., and Ramamurty, U., "Strain Rate Sensitivity of a Closed-cell Aluminum Foam", Materials Science and Engineering: A, Vol. 281, Issues 1-2, 2000, pp. 1-7. https://doi.org/10.1016/S0921-5093(99)00750-9
  6. Hashemi, S., Kinloch, A.J., and Williams, J.G., "The Analysis of Interlaminar Fracture in Uniaxial Fibre-polymer Composites", Proceedings of the Royal Society of London, Vol. 427, No. 1872, 1990, pp. 173-199. https://doi.org/10.1098/rspa.1990.0007
  7. Shin, K.B., and Koo, D.H., "A Study on the Evaluation of the Failure for Carbody Structures Made of Laminated Fiber-reinforced Composite Materials Using Total Laminate Approach", Korean Society for Composite Materials, Vol. 17, No. 1, 2004, pp. 18-28.
  8. Blackman, B.R.K., Dear, J.P., Kinloch, A.J., MacGillivray, H., Wang, Y., Williams, J.G., and Yayla, P., "The Failure of Fibre Composites and Adhesively Bonded Fibre Composites under High Rates of Test Part III Mixed-mode I/II and Mode II Loadings", Journal of Materials Science, Vol. 31, No. 17, 1996, pp. 4467-4477. https://doi.org/10.1007/BF00366342
  9. Giorgi, M.D, Carofalo, A., Dattoma, V., Nobile, R., and Palano, F., "Aluminum Foams Structural Modelling", Computers & Structures, Vol. 88, Issues 1-2, 2010, pp. 25-35. https://doi.org/10.1016/j.compstruc.2009.06.005
  10. Blackman, B.R.K., Hadavinia, H., Kinloch, A.J., Paraschi, M., and Williams, J.G., "The Calculation of Adhesive Fracture Energies in Mode I: Revisiting the Tapered Double Cantilever Beam (TDCB) Test", Engineering Fracture Mechanics, Vol. 70, No. 2, 2003, pp. 233-248. https://doi.org/10.1016/S0013-7944(02)00031-0
  11. Lee, J.H., Cho, J.U., and Cheon, S.S., "An Investigation on the Behavior of Fracture Mechanics as the Type of Mode I at Specimen Bonded with Tapered Carbon Fiber Reinforced Plastic", The Journal of the Korean Society for Composite Materials, Vol. 29, No. 2, 2016, pp. 85-89.
  12. Lee, J.H., Cho, J.U., Cheon, S.S., and Kook, J.H., "Fracture Behaviour Analysis of the Crack at the Specimen with the Type of Mode I Composed of the Bonded Carbon Fiber Reinforced Plastic", The Journal of the Korean Society for Composite Materials, Vol. 28, No. 6, 2015, pp. 356-360.