DOI QR코드

DOI QR Code

A Study on Security Authentication Vector Generation of Virtualized Internal Environment using Machine Learning Algorithm

머신러닝 알고리즘이 적용된 가상화 내부 환경의 보안 인증벡터 생성에 대한 연구

  • 최도현 (숭실대학교 컴퓨터공학) ;
  • 박중오 (성결대학교 파이데이아학부)
  • Received : 2016.08.24
  • Accepted : 2016.12.09
  • Published : 2016.12.31

Abstract

Recently, the investment and study competition regarding machine running is accelerating mainly with Google, Amazon, Microsoft and other leading companies in the field of artificial intelligence. The security weakness of virtualization technology security structure have been a serious issue continuously. Also, in most cases, the internal data security depend on the virtualization security technology of platform provider. This is because the existing software, hardware security technology is hard to access to the field of virtualization and the efficiency of data analysis and processing in security function is relatively low. This thesis have applied user significant information to machine learning algorithm, created security authentication vector able to learn to provide with a method which the security authentication can be conducted in the field of virtualization. As the result of performance analysis, the interior transmission efficiency of authentication vector in virtualization environment, high efficiency of operation method, and safety regarding the major formation parameter were demonstrated.

최근 인공지능 분야는 구글, 아마존, 마이크로 소프트 등 선진 기업을 중심으로 머신러닝에 대한 투자와 연구경쟁이 가속화 되고 있다. 가상화 기술은 가상화 보안 구조에 대한 보안 취약점 문제가 지속적으로 이슈화 되었다. 또한 내부 데이터 보안이 플랫폼 제공자의 가상화 보안 기술에 의존적인 경우가 대부분이다. 이는 기존 소프트웨어, 하드웨어 보안 기술은 가상화 영역 접근이 어렵고 보안 기능 수행에 데이터 분석 및 처리 효율성이 낮기 때문이다. 본 논문은 사용자 중요 정보를 기계학습 알고리즘을 적용하고, 학습 가능한 보안 인증벡터 생성하여 이를 가상화 내부 영역에서 보안 검증을 수행할 수 있는 방법을 제안한다. 성능분석 결과 인증벡터의 가상화 환경의 내부 전송 효율성, 연산방법의 높은 효율성과 주요 생성 파라미터에 대한 안전성을 입증하였다.

Keywords

References

  1. Lee Jeong, Yoon Hyukjin, "2015 Begins Popularized of Drones", Eugene Ivestment & Securities, Monthy Global IT No. 13, 2015.
  2. Ryu Hanseok, "Platform as a Drones and Implications", Digieco Report, Issue & Trend, 2015.
  3. Kim Iljoong, Eli Hong, "Content Industry Trend of USA", Weekly in Depth Issues, Vol. 6, No. 16, 2016.
  4. Kim Seokwon, An Sungwon, Chu Hyungseok, "AI AlphaGo, The Artificial Intelligence of Google's Baduk Win the Champions Humans", SPRI Issue Report, Vol. 1, 2016.
  5. Synergy Research Group, "The Big Four Cloud Providers are Leaving the Rest of the Market Behind", 2015.
  6. Kwon Aera, "Change and Countermeasures in the IT Ecosystem, According to a Spreading Cloud Services", Korea IT Service Industry Association, Industry Issue pp. 80-103, 2010.
  7. CVE-2012-0217, http://www.cve.mitre.org/cgibin/cvename.cgi?name=cve-2012-0217
  8. CVE-2014-0160, http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
  9. CVE-2015-3245, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3245
  10. CVE-2015-0012, http://www.cve.mitre.org/cgibin/cvename.cgi?name=cve-2015-0012
  11. CVE-2015-0235, http://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-0235
  12. Kim julie, Bahn hyokyung, "An Efficient Log Data Management Architecture for Big DataProcessing in Cloud Computing Environments", The journal of the Institute of Internet Broadcasting and Communication(JIIBC), Vol. 13, No. 2, pp. 1-7, 2012. https://doi.org/10.7236/JIIBC.2013.13.2.1
  13. Jung Hyeonjun, "Trends in Virtualization Technologies and Key Issues(I)", Koerea Information Society Development Insitute, Vol. 25, No. 3, pp. 63-92, 2013.
  14. Sin Youngsang, "Hypervisor-based Security Technology Trends in Cloud Environments", Korea Information Security Agency, Internet & Security Focus, pp. 55-75, 2014.
  15. Kotsiantis, Sotiris, Zaharakis, Pintelas, "Supervised machine learning: A review of classification techniques", Emerging Artificial Applications in Computer Engineering, IOS Press, pp. 3-24, 2007.
  16. Lewis, David, "Naive (Bayes) at forty: The independence assumption in information retrieval", Machine Learning: ECML-98, pp. 4-15, 2005.
  17. Weinberger, Saul, "Distance metric learning for large margin nearest neighbor classification", The Journal of Machine Learning Research, pp. 207-244, 2009.
  18. Jovanoski, Viktor, Nada Lavrac, "Classification rule learning with APRIORI-C", Springer Berlin Heidelberg, pp. 44-51, 2002.