DOI QR코드

DOI QR Code

Utilizing Spatial and Temporal Information in KAHIS for Aiding Animal Disease Control Activities

가축질병 방역활동 지원을 위한 국가동물방역통합시스템 시공간 정보 활용

  • PARK, Son-Il (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • PARK, Hong-Sik (Dept. of Veterinary Epidemiology, Animal and Plant Quarantine Agency) ;
  • JEONG, Woo-Seog (Dept. of Veterinary Epidemiology, Animal and Plant Quarantine Agency) ;
  • LEE, Gyoung-Ju (Dept. of Urban and Transportation Engineering, Korea National University of Transportation)
  • 박선일 (강원대학교 수의과대학 및 동물의학종합연구소) ;
  • 박홍식 (농림축산검역본부 동물질병관리부 역학조사과) ;
  • 정우석 (농림축산검역본부 동물질병관리부 역학조사과) ;
  • 이경주 (한국교통대학교 도시.교통공학과)
  • Received : 2016.11.11
  • Accepted : 2016.12.19
  • Published : 2016.12.31

Abstract

HPAI(Highly Pathogenic Avian Influenza) is a contagious animal disease that spreads rapidly by diffusion after the first occurrence. The disease has brought tremendous social costs and economic losses. KAHIS (Korea Animal Health Information System) is the integrated system for supporting the task of preventing epidemics. They provide decision-support information, recording vehicle visiting times and facility location, etc., which is possible by enforcing registration of all livestock related facilities and vehicles. KAHIS has accumulated spatial and temporal information that enables effective tracing of potential disease trajectories and diffusion through vehicle movements. The contact network is created utilizing spatial and temporal information in KAHIS to inform facility connection via vehicle visitation. Based on the contact network, it is possible to infer spatial and temporal mechanism of disease spread and diffusion. The study objective is to empirically demonstrate how to utilize primary spatial and temporal information in KAHIS in the form of the contact network. Based on the contact network, facilities with the possibility of infection can be pinpointed within the potential spatial and temporal extent where the disease has spread and diffused. This aids the decision-making process in the task of preventing epidemics. By interpreting our demonstration results, policy implications were presented. Finally, some suggestions were made to comprehensively utilize the contact network to draw enhanced decision-support information.

고병원성 조류인플루엔자(Highly Pathogenic Avian Influenza: HPAI)는 전염력이 매우 높아 발병 시 전국적으로 확산되어 막대한 사회경제적 피해를 유발하는 제1종 법정가축전염병이다. 국가동물방역통합시스템(Korea Animal Health Integrated System: KAHIS)은 축산차량등록제를 통하여 축산관련차량의 축산관련시설 출입정보를 실시간으로 기록함으로써 가축질병 발생 시 신속한 방역업무를 지원하기 위하여 구축한 통합시스템이다. KAHIS는 가축질병 발생 시 차량이동에 의한 확산경로를 효과적으로 추적하기 위한 시공간 정보를 포함한다. 이러한 시공간 정보를 바탕으로 시설들 간 연결 관계를 나타내는 접촉 네트워크를 구축할 경우 가축질병의 시공간 확산과정 추론에 유용하게 활용할 수 있다. 본 연구의 목적은 가축질병 방역활동 지원을 위하여 KAHIS에 내재된 시공간 정보를 접촉 네트워크로 구축하여 일차적 활용방안을 실증적으로 제시하는 것이다. 구축한 접촉 네트워크를 토대로 가축질병의 확산이 이루어지는 잠재적 시공간적 권역을 추정함으 로써 차단 방역 관련 의사결정을 돕기 위한 분석정보를 도출하고 해석을 통하여 정책적 함의를 제시하였다. 아울러 좀 더 고도화된 의사결정 지원정보 도출을 위한 접촉 네트워크의 심층적 활용 방안을 제시하였다.

Keywords

References

  1. Bae, S.H., H.Y. Jeong, and C.H. Eom. 2016. Social network type analysis of highly pathogenic avian influenza(HPAI) outbreaks in South Korea. Journal of the Korean Association of Geographic Information Studies 19(3):114-126 (배선학.정해용.엄치호. 2016. 2014-2016 국내 발생 고병원 성조류인플루엔자(HPAI)의 사회연결망(social network) 유형 분석. 한국지리정보학회지 19(3):114-126). https://doi.org/10.11108/kagis.2016.19.3.114
  2. Brennan, M.L., R., Kemp, and R.M. Christley. 2008. Direct and indirect contacts between cattle farms in northwest England. Preventive Veterinary Medicine 84(3-4):242-260. https://doi.org/10.1016/j.prevetmed.2007.12.009
  3. Firestone, S.M., R.M. Christley, M.P. Ward, and N.K. Dhand. 2012. Adding the spatial dimension to the social network analysis of an epidemic: Investigation of the 2007 outbreak of equine influenza in Australia. Preventive Veterinary Medicine 106(2):123-135. https://doi.org/10.1016/j.prevetmed.2012.01.020
  4. Kerkhove, M.D.V., S. Vong, J. Guitian, D. Holl, P. Mangtani, S. San, and A.C. Ghani. 2009. Poultry movement networks in Cambodia: implications for surveillance and control of highly pathogenic avian influenza(HPAI/H5N1). Vaccine 27(45):6345-6352. https://doi.org/10.1016/j.vaccine.2009.05.004
  5. Lee, J.H., T.J. Kim, H.M. Nam, H.C. Yoon, C.K. Park, J.Y. Park, S.H. An, C.S. Kim, and S.H. Wee. 2006. Changes in policies of animal disease control measures according to the outbreak of foot-andmouth disease in Korea. Korean Journal of Veterinary Public Health 30(1):57-68.(이주호.김태종.남향미.윤하정.박최규.박지용.안수환.감창섭.위성환. 2006. 국내 구제역 발생에 따른 가축 방역 정책의 변화. 한국수의공중보건학회지 30(1):57-68).
  6. Lin, Y and C. Heffernan. 2011. Accessible and inexpensive tools for global HPAI surveillance: a mobile-phone based system. Preventive Veterinary Medicine 98(2-3):209-214. https://doi.org/10.1016/j.prevetmed.2010.10.003
  7. Martin, V., X. Zhou, E. Marshall, B. Jia, G. Fusheng, M.A. FrancoDixon, N. DeHaan, D.U. Pfeiffer, R.j. Soares Magalhaes, and M. Gilbert. 2011. Risk-based surveillance for avian influenza control along poultry market chains in South China: The value of social network analysis. Preventive Veterinary Medicine 102(3):196-205. https://doi.org/10.1016/j.prevetmed.2011.07.007
  8. Martinez-Lopez, B., A.M. Perez, and J.M. Sanchez-Vizcaino. 2009. Combined application of social network and cluster detection analyses for temporal-spatial characterization of animal movements in Salamanca, Spain. Preventive Veterinary Medicine 91(1):29-38. https://doi.org/10.1016/j.prevetmed.2009.05.007
  9. MIFAFF(Ministry for Food, Agriculture, Forestry and Fisheries). 2012. Development of a lookout network system on domestic fowl industry for predicting HPAI(highly pathogenic avian influenza) outbreak and dispersion. Research Report. pp.506-507 (농림수산식품부. 2012. 고병원성 조류인플루엔자(HPAI)의 유입 및 전파확산경로 예측을 위한 가금 산업의 유통 감시 네트워크 시스템 개발에 관한 연구. 연구보고서. 506-507쪽.
  10. Park, S.I., O.K. Moon, W. Jeong, and G. Lee. 2015. A study on spatial sampling of domestic wild bird migrate habitats for monitoring HPAI. Journal of the Korean Cartographic Association 15(1):25-35(박선일, 문운경, 정우석, 이경주. 2015. 국내 야생 철새 도래지 공간표집방법론에 관한 연구. 한국지도학회지 15(1):25-35).
  11. Park, S.I and S.H. Bae. 2016. Link between service coverage of slaughterhouse and the potential disease transmission: analyzing the livestock movements data for simulation exercise(CPX). Journal of the Korean Cartographic Association 16(1): 67-77(박선일.배선학. 2016. 가축질병 가상방역훈련(CPX)을 위한 축산차량 이동 분석: 도축장의 서비스 범위 분석을 사례로. 한국지도학회지 16(1):67-77). https://doi.org/10.16879/jkca.2016.16.1.067
  12. Pfeiffer D.U., P.Q. Minh, V. Martin, M. Epprecht, and M.J. Otte. 2007. An analysis of the spatial and temporal patterns of highly pathogenic avian influenza occurrence in Vietnam using national surveillance data. Veterinary Journal 174(2):302-309. https://doi.org/10.1016/j.tvjl.2007.05.010
  13. Smith, R.P., A.J.C. Cook, and R.M. Christley. 2013. Descriptive and social network analysis of pig transport data recorded by quality assured pig farms in the UK. Preventive Veterinary Medicine 108(2-3):167-177. https://doi.org/10.1016/j.prevetmed.2012.08.011
  14. Webb, C.R. 2005. Farm animal networks: unraveling the contact structure of the British sheep population. Preventive Veterinary Medicine 68(1):3-17. https://doi.org/10.1016/j.prevetmed.2005.01.003
  15. Yang. K.G. 2013. Analysis of relative importance of FMD disaster management policies by their categories -focused on the privatization using AHP method-. The Korea Public Administration Journal 22(2):91-119 (양기근. 2013. 구제역 재난관리 정책의 영역별 상대적 중요도 분석-AHP 기법을 이용한 우선순위 측정을 중심으로-. 한국행정연구 22(2):91-119).

Cited by

  1. 국내 조류인플루엔자 발생 지역의 모델 패턴을 활용한 고병원성조류인플루엔자(HPAI)의 감염가능 지역 분석 vol.20, pp.2, 2017, https://doi.org/10.11108/kagis.2017.20.2.060
  2. Effects of Spatial Characteristics on the Spread of the Highly Pathogenic Avian Influenza (HPAI) in Korea vol.18, pp.8, 2016, https://doi.org/10.3390/ijerph18084081