DOI QR코드

DOI QR Code

Dynamic Response of Charge Recombination from Post-Annealing Process in Organic Solar Cell Using Intensity Modulated Photovoltage Spectroscopy

  • Jeong, Hanbin (Department of Chemistry Education, Chosun University) ;
  • Yun, Suk-Jin (Department of Chemistry Education, Chosun University) ;
  • Lee, Jae Kwan (Department of Chemistry Education, Chosun University)
  • Received : 2016.09.12
  • Accepted : 2016.12.25
  • Published : 2016.12.31

Abstract

Intensity modulated photovoltage spectroscopy (IMVS) analysis of organic solar cells (OSCs) with a bulk-heterojunction (BHJ) film composed of P3HT and $PC_{61}BM$ was performed. The dynamic response of charge recombination by the post-annealing approach in $P3HT/PC_{61}BM$ BHJ solar cells characterized by IMVS demonstrated that post-annealing reduced the recombination of electron carriers in the device. The recombination times of $P3HT/PC_{61}BM$ BHJ solar cells post-annealed at room temperature, 80, 120, and $140^{\circ}C$ were 0.009, 0.020, 0.024, and 0.030 ms, respectively, at a short-circuit current of 0.18 mA. The results indicated that the IMVS analysis can be effectively used as powerful.

Keywords

References

  1. F. C. Krebs, "Fabrication and processing of polymer solar cells: A review of printing and coating techniques", Sol. Energ. Mater. Sol. C., Vol. 93, pp. 394-412, 2009. https://doi.org/10.1016/j.solmat.2008.10.004
  2. A. C. Arias, J. D. Mackenize, I. McCulloch, J. Rivanay, and A. Salleo, "Materials and applications for large area electronics: Solution-based approaches", Chem. Rev., Vol. 110, pp. 3-24, 2010. https://doi.org/10.1021/cr900150b
  3. T. D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen, and F. C. Kerbs, "Business, market and intellectual property analysis of polymer solar cells", Sol. Energ. Mater. Sol. C., Vol. 94, pp. 1553-1571, 2010. https://doi.org/10.1016/j.solmat.2010.04.074
  4. M. Helgesen, R. Sonergaard, and F. C. Krebs, "Advanced materials and processes for polymer solar cell devices", J. Mater. Chem., Vol. 20, pp. 36-60, 2010. https://doi.org/10.1039/B913168J
  5. S. C. Price, A. C. Stuart, L. Yang, H. Zhou, and W. You, "Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymerfullerene solar cells", J. Am. Chem. Soc., Vol. 133, pp. 4625-4631, 2011. https://doi.org/10.1021/ja1112595
  6. H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, and W. You, "Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency", Angew. Chem. Int. Edit., Vol. 123, pp. 3051-3054, 2011. https://doi.org/10.1002/ange.201005451
  7. H. Choi, S.-J. Ko, Y. Choi, P. Joo, T. Kim, B. R. Lee, J.-W. Jung, H. J. Choi, M. Cha, J.-R. Jeong, I.-W. Hwang, M. H. Song, B.-S. Kim, and J. Y. Kim, "Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices", Nat. Photonics, Vol. 7, pp. 732-738, 2013. https://doi.org/10.1038/nphoton.2013.181
  8. H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, T.-Q. Nguyen, G. C. Bazan, and A. J. Heeger, "Conductive conjugated polyelectrolyte as hole-transporting layer for organic bulk heterojunction solar cells", Adv. Mater., Vol. 26, pp. 780-785, 2014. https://doi.org/10.1002/adma.201302845
  9. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, "Air-stable polymer electronic devices", Adv. Mater., Vol. 19, pp. 2445-2449, 2007. https://doi.org/10.1002/adma.200602653
  10. R. Po, C. Carbonera, A. Bernardi, and N. Camaioni, "The role of buffer layers in polymer solar cells", Energ. Environ. Sci., Vol. 4, pp. 285-310, 2011. https://doi.org/10.1039/C0EE00273A
  11. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, "Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology", Adv. Funct. Mater., Vol. 15, pp. 1617-1622, 2005. https://doi.org/10.1002/adfm.200500211
  12. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends", Nat. Mater., Vol. 4, pp. 864-868, 2005. https://doi.org/10.1038/nmat1500
  13. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yeun, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, "Processing additives for improved efficiency from bulk heterojunction solar cells", J. Am. Chem. Soc., Vol. 130, pp. 3619-3623, 2008. https://doi.org/10.1021/ja710079w
  14. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, "Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure", Nat. Photonics, Vol. 6, pp. 591-595, 2012. https://doi.org/10.1038/nphoton.2012.190
  15. H. Hoppe and N. S. Saricftci, "Morphology of polymer/fullerene bulk heterojunction solar cells", J. Mater. Chem., Vol. 16, pp. 45-61, 2006. https://doi.org/10.1039/B510618B
  16. V. Palermo, M. Palma, and P. Samori, "Electronic characterization of organic thin films by kelvin probe force microscopy", Adv. Mater., Vol. 18, pp. 145-164, 2006. https://doi.org/10.1002/adma.200501394
  17. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, "Morphology evolution via self-organization and lateral and vertical diffusion in polymer: Fullerene solar cell blends", Nat. Mater, Vol. 7, pp. 158-164, 2008. https://doi.org/10.1038/nmat2102
  18. S. R. Cowan, N. Banerji, W. L. Leong, and A. J. Heeger, "Charge formation, recombination, and sweep-out dynamics in organic solar cells", Adv. Funct. Mater., Vol. 22, pp. 1116-1128, 2012. https://doi.org/10.1002/adfm.201101632
  19. B. J. Leever, C. A. Bailey, T. J. Marks, M. C. Hersam, and M. F. Durstock, "In situ characterization of lifetime and morphology in operating bulk heterojunction organic photovoltaic devices by impedance spectroscopy", Adv. Energy Mater., Vol. 2, pp. 120-128, 2012. https://doi.org/10.1002/aenm.201100357
  20. G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, and R. Pacios, "Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy", Org. Electron., Vol. 9, pp. 847-851, 2008. https://doi.org/10.1016/j.orgel.2008.06.007
  21. T. Kuwabara, Y. Kawahara, T. Yamaguchi, and K. Takahashi, "Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy", ACS Appl. Mater. Inter., Vol. 1, pp. 2107-2110, 2009. https://doi.org/10.1021/am900446x
  22. Q. Wang, S. Ito, M. Gratzel, F. Fabragat-Santiago, I. Mora-Sero, J. Bisquert. T. Bessho, and H. Imai, "Charavteristics of high efficiency dye-sensitized solar cells", J. Phys. Chem. B, Vol. 110, pp. 25210-25221, 2006. https://doi.org/10.1021/jp064256o
  23. G. O. Kim and K. S. Ryu, "Dynamic response of charge transfer and recombination at various electrodes in dye-sensitized solar cells investigated using intensity modulated photocurrent and photovoltage spectroscopy", B. Korean Chem. Soc., Vol. 33, pp. 469-472, 2012. https://doi.org/10.5012/bkcs.2012.33.2.469
  24. J. V. D. Lagemaat, N.-G. Park, and A. J. Frank, "Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline $TiO_2$ solar cells: A study by electrical impedance and optical modulation techniques", J. Phys. Chem. B, Vol. 104, pp. 2044-2052, 2000. https://doi.org/10.1021/jp993172v
  25. J. K. Lee, N. E. Coates, S. Cho, N. S. Cho, D. Moses, G. C. Bazan, K. Lee, and A. J. Heeger, "Efficacy of $TiO_x$ optical spacer in bulk-heterojunction solar cells processed with 1,8-octanedithiol", Appl. Phys. Lett., Vol. 92, pp. 243308, 2008. https://doi.org/10.1063/1.2937844