DOI QR코드

DOI QR Code

지구-달 위상전이궤적에서 발사체 투입오차가 중간경로수정기동에 미치는 영향 분석

An Analysis of Mid-Course Correction Maneuvers according to Launch-Vehicle Dispersion in Earth-Moon Phasing-Loop Trajectory

  • 최수진 (한국항공우주연구원 달탐사연구단 달탐사체계팀) ;
  • 이동헌 (한국항공우주연구원 달탐사연구단 달탐사체계팀) ;
  • 석병석 (한국항공우주연구원 달탐사연구단 달탐사체계팀) ;
  • 민승용 (한국항공우주연구원 달탐사연구단 달탐사체계팀) ;
  • 류동영 (한국항공우주연구원 달탐사연구단 달탐사체계팀)
  • Choi, Su-Jin (Lunar Exploration System Team, Korea Aerospace Research Institute) ;
  • Lee, Dong-Hun (Lunar Exploration System Team, Korea Aerospace Research Institute) ;
  • Suk, Byong-Suk (Lunar Exploration System Team, Korea Aerospace Research Institute) ;
  • Min, Seung-Yong (Lunar Exploration System Team, Korea Aerospace Research Institute) ;
  • Rew, Dong-Young (Lunar Exploration System Team, Korea Aerospace Research Institute)
  • 투고 : 2016.10.10
  • 심사 : 2016.11.24
  • 발행 : 2016.12.31

초록

중간경로수정기동은 발사체 분리벡터를 보정하기 위해 필요하다. 직접전이궤적의 경우에는 약 3~4회의 중간경로수정 기동이 요구되었다. 그러나 위상전이궤적의 직접전이궤적에 비해 전이궤적이 길기 때문에 중간경로수정기동의 전략이 달라진다. 위상전이궤적을 이용하는 궤도선은 지구를 여러 번 돌기 때문에 근지점 및 원지점 등 발사체 투입오차를 보정하기 위한 좋은 지점을 여러 번 만나게 된다. 발사체 분리 오차가 크다 하더라도 중간경로수정기동의 전략이 좋으면 적은양의 보정 기동으로도 큰 오차를 보정할 수 있다. 본 논문은 높은 발사체 투입오차를 보정하기 위한 위상전이궤적의 절차와 전략을 기술한다.

Mid-course correction maneuvers (MCCMs) are necessary to correct the launch-vehicle dispersion to go to the Moon. There were 3 or 4 MCCMs needed for a direct transfer trajectory. But the strategy for MCCMs of the phasing-loop trajectory is different, because it has a longer trans-lunar trajectory than direct transfer does. An orbiter using a phasing-loop trajectory has several rotations of the Earth, so the orbiter has several good places, such as perigee and apogee, to correct the launch-vehicle dispersion. Although launch dispersion is relatively high, the launch vehicle is not as accurate as we expected. A good MCCM strategy can overcome the high dispersion by using small-magnitude correction maneuvers. This paper describes the phasing-loops sequence and strategy to correct high launch-vehicle dispersions.

키워드

참고문헌

  1. David Lozier & Ken Galal, "Lunar Prospector Mission Design and Trajectory Support", The American Astronautical Society, 1998.
  2. Michael Mesarch, Mark Beckman, David Folta, Rivers Lamb and Karen Richon, "Maneuver Operations Results from the Lunar Reconaissance Orbiter(LRO) Mission" SpaceOps Conference, 2010.
  3. Takaaki Katoh, Hiroshi Terada, "Orbital Maneuver Plan and Operation Results of KAGUYA during Lunar Transfer Orbit and Lunar Orbit Injection", ISTS, June 2008, Hamamatsu.
  4. Michel Loucks, Laura Plice, Daniel Cheke, Cary Maunder and Brian Reich, "Trade Studies in LADEE Trajectory Design", The American Astronautical Society, 2015.
  5. https://pds.jpl.nasa.gov/ds-view/pds/viewMissionProfile.jsp?MISSION_NAME=CHANDRAYAAN-1
  6. Su-Jin Choi, In-Kyu Kim, Sang-Man Moon, Seung-Yong Min, and Dong-Young Rew, "A Study on Variation of Orbital Elements according to Variation of Target Value of Lunar Orbit Insertion", Journal of The Society for Aerospace System Engineering, vol. 9, no. 4, pp. 16-22, 2015.
  7. Changkyoon Kim, Jae-Wook Kwon, Sang-Man Moon, In-Kyu Kim and Seung-Yong Min, "A Case Study on LRO Flight Software for Korean Lunar Exploration Program", Journal of The Society for Aerospace System Engineering, vol. 9, no. 4, pp. 73-80, 2015.
  8. www.agi.com