DOI QR코드

DOI QR Code

렌즈 시프팅 영상 안정화 기법 적용을 위한 위성카메라의 광학설계

Optical Design of Satellite Camera for Lens Shifting Image Stabilization

  • 탁준모 (한국항공대학교 항공우주 및 기계공학과 대학원) ;
  • 황재혁 (한국항공대학교 항공우주 및 기계공학부)
  • Tak, Jun-Mo (School of Aerospace and Mechanical Engineering, Graduate School at KAU) ;
  • Hwang, Jai-Hyuk (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 투고 : 2016.09.20
  • 심사 : 2016.12.07
  • 발행 : 2016.12.31

초록

본 연구에서는 초점면부 영상안정화 기법 중 렌즈 시프팅 영상안정화 기법에 적용될 광학설계를 수행하였다. 렌즈 시프팅 기법은 광학탑재체로 전달되는 미세진동외란을 보상하기 위해 광 경로를 바꿔주는 영상 안정화 기법이다. 실제 위성카메라의 제원을 참고하여 렌즈 시프팅 기법이 적용될 광학계의 요구도를 수립하였으며, 광학설계 프로그램인 Code-V를 이용해 광학계를 설계하였다. 설계된 광학계가 요구 조건을 충족하였는지 검증하기 위해 시야에 따른 광선 수차분석, 스팟 다이어그램 분석, MTF 선도분석을 수행하였다. 최종적으로 설계된 광학계는 슈미트 카세그라인 타입에 필드 플래트너와 진동보상 렌즈가 삽입된 형태이며, 주반사경 직경은 200 mm, GSD 2.87m, 나이퀴스트 주파수에서 MTF 33%으로 광학계 성능요구도를 만족하였다. 본 연구에서 설계된 진동보상렌즈의 입사광선에 대한 진동계수는 0.95~1.00 으로 성능 요구도를 만족하였다.

In this study, an optical system for a lens-shifting method that compensates for microvibration of a high-agility small satellite has been designed. The lens-shifting method is an image-stabilization technique that can be applied to compensate for the optical path disturbed by microvibration. The target optical system is designed by using Code-V, a commercial optical-design code. The specifications for real satellite cameras have established the requirements for optical design. The Ray aberration curve, spot diagram, and MTF curve were carried out to verify if the designed optical system meets the requirements or not. The designed Schmidt-Cassegrain optical system with field flattener and a vibration-reduction lens has been verified to meet the optical requirements, 33% of MTF at Nyquist frequency, GSD of 2.87 m, and vibration coefficient of 0.95~1.0.

키워드

참고문헌

  1. Hongrae Kim, and Young-Keun Chang, "Conceptual Design of Electro-Optical Payload System for Small ISR Satellite," Autumn Conference of the Institute of Control ,Robotics and Systems, pp. 335-344, 2012.
  2. Young-Keun Chang, "The Trend and Prospect of Small Satellite Research and Development," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 31, no. 6, pp. 118-132, 2003. https://doi.org/10.5139/JKSAS.2003.31.6.118
  3. Hong-Bae Kim, Won-Beom Lee, and Gyu-Sun Kim, "Vibration Suppression Techniques Adopted in Spacecraft Development," Current Industrial and Technological Trends in Aerospace, vol. 9, no. 2, pp. 90-97, 2011.
  4. Klaus Janschek, Valerij Tchernykh, and Serguei Dyblenko, "Integrated Camera Motion Compensation by Real-Time Image Motion Tracking and Image Deconvolution," Proceedings of the 2005 IEEE International Conference on Advanced Intelligent Mechatronics, Monterey, California, USA, (ICAIM), 2005.
  5. Klaus Janschek, and Valerij Tchernykh, "Optical Correclator for Image Motion Compensation in the Focal Plane of a Satellite Camera," 15th IFAC Symposium on Automatic Control in Aerospace, Bologna, Italy, (ACA), 2001.
  6. Chon Sok Im, Fundamentals of Geometrical Optics, Tech Media, 2006.
  7. Gyu-Sun Kim, "Development Trends in Super High Resolution Earth Observation Optical Satellite," Current Industrial and Technological Trends in Aerospace, vol. 11, no. 2, pp. 101-110, 2013.
  8. Seonghui Kim, Deog-Gyu Lee, Dae-Jun Jung, Young-Chun Youk, and Eung-Shik Lee, "Optical Design for High Resolution Electro-Optical Camera of Compact Advanced Satellite," Autumn Conference of the Korean Society for Aeronautical and Space Sciences, pp.556-558, 2014.
  9. https://directory.eoportal.org.
  10. Hee Seob Kim, Dae Won Chung, and Hae Jin Choi, "Satellite Operation Design for Assessing MTF Preformance of Earth Observation Satellite Using Stellar Source," Journal of Astronomy and Space Sciences, vol. 24, no. 4, pp. 379-388, 2007. https://doi.org/10.5140/JASS.2007.24.4.379
  11. Jeong-bin Jo, Jai-Hyuk Hwang, and Jae-Sung Bae, "Optical Design for Satellite Camera with Online Optical Compensation Movements," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 43, no. 3, pp. 265-271, 2015. https://doi.org/10.5139/JKSAS.2015.43.3.265
  12. http://www.celestron.com.
  13. Rutten, Harrie G. J., van Venrooij, and Martin A. M., Telescope Optics, 4th Ed, Willmann-Bell, 1999.
  14. Y.W. Lee, "Evaluation Technique of High Resolution Satellite Camera," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 22, no. 2, pp. 29-42, 1999.
  15. Myung-Sin Cho, Jai-Hyuk Hwang, "On the Compensation of Camera Hand Shaking Using Friction Driven Piezoelectric Actuator," Journal of Aerospace System Engineering, vol. 9, no. 4, pp. 55-61, 2015.
  16. Hyunmo Jung, Seongcheol Kwon, Hyunung Oh, "Experimental Performance Verification of Energy-Harvesting System Using the Micro-vibration of the Space borne Cryocooler," Journal of Aerospace System Engineering, vol. 10, no. 3, pp. 15-22, 2016. https://doi.org/10.20910/JASE.2016.10.3.15