DOI QR코드

DOI QR Code

Aggressive Spatial Reuse Scheme for the 802.11 Wireless LAN

무선랜에서의 적극적 공간 재활용 기법

  • Kim, Jinkyeong (ETRI Department of Communications & Internet Research Laboratory) ;
  • Ahn, Jae-Min (Chungnam National University Department of Radio Engineering, Information & Communication Engineering)
  • Received : 2015.11.25
  • Accepted : 2016.02.15
  • Published : 2016.02.29

Abstract

We provide an aggressive spatial reuse scheme exploiting the space sensed busy when neighboring 802.11 stations radiate radio wave in omni-directions. For this purpose, we develop four strategies, i.e., disruptive RTS, busy random backoff, zero padding, and unavailable pair management. The simulation results show that the proposed scheme can improve the aggregate network throughput from 14% to 50% while the station adopting the proposed scheme coexists with the legacy stations.

본 논문에서는 무지향성 안테나를 장착한 IEEE 802.11 기반 무선랜이 서로 이웃하는 환경에서 채널의 혼잡 여부를 판별하여 적극적으로 공간 재활용을 함으로써 전체 네트워크의 성능 향상을 높이는 기법을 제안한다. 파괴적 RTS(Disruptive RTS), 혼잡 랜덤 백오프(Busy Random Backoff), 제로 패딩(Zero Padding)과 불가용 단말쌍 관리로 이루어진 적극적 공간 재활용 전략은 기존의 IEEE 802.11 기반 무선랜과의 역호환성을 유지하며 최대 50%부터 최소 14%의 성능 향상을 가져옴을 확인하였다.

Keywords

References

  1. A. Kamerman and L. Monteban, "WaveLAN -II: a high-performance wireless LAN for the unlicensed band," Bell Labs Technical J., vol. 2, no. 3, pp. 118-133, 1997. https://doi.org/10.1002/bltj.2069
  2. Cisco Systems, Cisco VNI Global Mobile Data Traffic Forecast, 2013-2018, Retrieved Jan., 30, 2015, from http://www.cisco.com.
  3. S. G. Jin, M. H. Choi, K. P. Kim, and S. H. Choi, "Opportunistic spatial reuse in IEEE 802.15.3c wireless personal area networks," IEEE Trans. Veh. Tech., vol. 62, no. 2, pp. 824-834, Feb. 2013. https://doi.org/10.1109/TVT.2012.2226638
  4. D. Fan, Z. Zhong, G Wang, and F. Gao, "Channel estimation for 60GHz wireless local area networks with massive receiving antennas," in Proc. High Mobility Wireless Commun., pp. 63-67, Beijing, China, Nov. 2014.
  5. K. Haneda, "Saturation performance analysis of directional CSMA/CA in mmWave WPANs," IEICE Trans. Commun., vol. E98-B, no. 5, pp. 755-772, May 2015. https://doi.org/10.1587/transcom.E98.B.755
  6. T. S. Rappaport, Wireless Communications: Principle and Practice, 2nd Ed., Prentice-Hall, 2002.
  7. Y. S. Kim, S. H. Choi, K. H. Jang, and H. S. Hwang, "Throughput enhancement of IEEE 802.11 WLAN via frame aggregation," in Proc. IEEE VTC'04, pp. 3030-3034, Los Angeles, USA, Sept. 2004.
  8. Y. Xiao, "IEEE 802.11n: enhancements for higher throughput in wireless LANs," IEEE Wireless Commun., vol. 12, no. 6, pp. 82-91, Dec. 2005.
  9. IEEE Std., IEEE 802.11-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Aug. 1999.
  10. Network Simulator 2, http://www.isi.edu/nsnam/ns/.
  11. Q. Chen, F. Schmidt-Eisenlohr, D. Jiang, M. Torrent-Moreno, L. Delgrossi, and H. Hartenstein, "Overhaul of ieee 802.11 modeling and simulation in ns-2," in Proc. IEEE MSWiM'07, pp. 159-168, Chania, Greece, Oct. 2007.

Cited by

  1. Selective Route Based on SNR with Cross-Layer Scheme in Wireless Ad Hoc Network vol.2017, pp.2090-715X, 2017, https://doi.org/10.1155/2017/1378374