DOI QR코드

DOI QR Code

DT-GPSR: Delay Tolerant-Greedy Perimeter Stateless Routing Protocol

DT-GPSR: 지연감내형 GPSR 라우팅 프로토콜

  • Received : 2015.12.01
  • Accepted : 2016.02.12
  • Published : 2016.02.29

Abstract

Mobile ad-hoc networks (MANETs) experience frequent link disconnections due to non-uniform node distribution and mobility. Thus, end-to-end path establishment-based routing protocols cause frequent transmission failures in MANETs, resulting in heavy control messages for path reestablishment. While location-based MANET routing protocols, such as Greedy Perimeter Stateless Routing (GPSR), use location information to forward messages in a hop-by-hop routing fashion without an end-to-end path establishment procedure, such protocols encounter communication void problems when message forwarding to the next hop fails due to the absence of a relay node. Therefore, to solve this problem, this paper proposes a Delay Tolerant-GPSR (DT-GPSR) protocol, which combines Delay Tolerant Networking (DTN) technology with the GPSR protocol. The performance of DT-GPSR is compared with the performances of the original GPSR and PRoPHET routing protocols through simulation using NS-2. The simulation results confirm that DT-GPSR outperforms GPSR and PRoPHET in terms of the message delivery ratio and message delivery delay.

실제 이동 통신 환경은 불균일한 단말 분포와 이동성으로 인하여 링크 단절이 일어나는 경우가 빈번하다. 이러한 네트워크 환경에서 경로 수립 기반의 MANET 라우팅 프로토콜은 잦은 전송 실패를 야기하여 메시지 전달률을 감소시키고, 경로 재수립을 위한 제어 메시지를 많이 발생시켜 네트워크 효율성을 크게 저하시킨다. 반면 GPSR과 같은 위치 정보 기반 MANET 라우팅 프로토콜은 종단 간 경로 수립 절차 없이 hop-by-hop 라우팅을 수행하여 제어 메시지 발생을 최소화하지만, 중계 노드의 결손으로 인해 보이드(void)가 발생 할 경우 데이터 전달 실패 등 다양한 문제를 유발한다. 본 논문에서는 보이드로 인해 발생되는 라우팅 문제점들을 개선하기 위하여, GPSR 프로토콜에 확률 기반 Delay Tolerant Networking 기술이 결합된 DT-GPSR 프로토콜을 제안한다. NS-2 시뮬레이션을 통해 기존 GPSR 프로토콜 및 PRoPHET 프로토콜과의 성능을 비교하였으며, 제안 방안이 다양한 망의 변화에 대응하여 우수한 성능을 보임을 확인하였다.

Keywords

References

  1. M. Kumar and R. Mishra, "An overview of MANET: History, challenges and applications," Indian J. Comput. Sci. Eng. (IJCSE), vol. 3, no. 1, Mar. 2012.
  2. H. Suh and H. Hwang, "Rerouting method for MANET using local path modification," J. KICS, vol. 39, no. 9, pp. 620-628, Sept. 2014.
  3. C. E. Perkins, and P. Bhagwat, "Highly dynamic Destination-Sequenced Distance - Vector routing (DSDV) for mobile computers," in Proc. Commun. Architectures, Protocols and Appl., pp. 234-244, Aug. 1994.
  4. D. Johnson, The Dynamic Source Routing Protocol (DSR), in IETF RFC 4728, Feb. 2007.
  5. C. Perkins, E. Belding-Royer, and S. Das, Ad hoc On-Demand Distance Vector (AODV) Routing, in RFC 3561, Jul. 2003.
  6. T. Clausen and P. Jacquet, Optimized Link State Routing Protocol (OLSR), in RFC 3626, Oct. 2003.
  7. S. Alarmelu V., R. Poonkuzhali, and M. Y. Sanavullah, "An efficient void handling technique for geographic routing in MANET: A survey," IJARCSSE, vol. 2, No. 12, pp. 164-170, Dec. 2012.
  8. S. Lee and D. Choi, "A node status control algorithm in mobile ad-hoc networks," J. KICS, vol. 39, no. 3, pp. 188-190, Mar. 2014.
  9. B. Karp and H. T. Kung, "GPSR: Greedy perimeter stateless routing for wireless networks," in Proc. Annu. Int. Conf. Mob. Comput. and Netw., pp. 243-254, Aug. 2000.
  10. C. Tzu-Chiang, C. Jia-Lin, T. Yue-Fu, and L. Sha-Pai, "Greedy geographical void routing for wireless sensor networks," World Academy of Sci., Eng. Technol., vol. 7, pp. 1269-1277, 2013.
  11. Q. Fang, J. Gao, and L. J. Guibas, "Locating and bypassing holes in sensor networks," Mob. Netw. and Appl., vol. 11, no. 2, pp. 187-200, Apr. 2006. https://doi.org/10.1007/s11036-006-4471-y
  12. M. Aissani, A. Mellouk, N. Badache, and M. Djebbar, "A new approach of announcement and avoiding routing voids in wireless sensor networks," in Proc. IEEE Global Telecommun. Conf., pp. 1-5, Nov. 2008.
  13. W-J. Liu and K-T. Feng, "Greedy routing with anti-void traversal for wireless sensor networks," IEEE Trans. Mob. Comput., vol. 8, no. 7, pp. 910-922, Jul. 2009. https://doi.org/10.1109/TMC.2008.162
  14. M. Aissani, A. Mellouk, N. Badache, and M. Djebbar, "A preventive rerouting scheme for avoiding voids in wireless sensor networks," in Proc. IEEE Global Telecommun. Conf., pp. 1-5, Dec. 2009.
  15. H. Wang, X. Zhang, and A. Khokhar, "Efficient void handling in contention-based geographic routing for wireless sensor networks," in Proc. IEEE Global Telecommun. Conf., pp. 663-667, Nov. 2007.
  16. W. Jia, T. Wang, G. Wang, and M. Guo, "Hole avoiding in advance routing in wireless sensor networks," in Proc. IEEE WCNC 2007, pp. 3519-3523, Mar. 2007.
  17. M. Aissani, A. Mellouk, N. Badache, and B. Saidani, "Oriented void avoidance scheme for real-time routing protocols in wireless sensor networks," in Proc. IEEE Global Commun. Conf., pp. 1-5, Nov. 2008.
  18. H. Cho, S. Kim, C. Kim, S. Kim, and C. Hwang, "Energy-Efficient face routing protocol considering radio range in wireless sensor networks," J. KICS, vol. 40, no. 6, pp. 1058-1069, Jun. 2015. https://doi.org/10.7840/kics.2015.40.6.1058
  19. Delay tolerant networking research group, http://www.dtnrg.org
  20. L. Pelusi, A. Passarella, and M. Conti, "Opportunistic networking: data forwarding in disconnected mobile ad hoc networks," IEEE Commun. Mag., vol. 44, no. 11, Nov. 2006.
  21. A. Lindgren, A. Doria, E. Davies, and S. Grasic, Probabilistic routing protocol for intermittently connected networks, in IETF RFC 6693, 2012.
  22. The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/
  23. K. Lee, S. Hong, S. Kim, I. Rhee, and S. Chong, "SLAW: A mobility model for human walks," in Proc. IEEE INFOCOM, pp. 855-863, Rio de Janeiro, Apr. 2009.

Cited by

  1. Study on DTN Routing Protocol of Vehicle Ad Hoc Network Based on Machine Learning vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/7965093