DOI QR코드

DOI QR Code

Marker-Assisted Selection for Monoecy in Chamoe (Cucumis melo L.)

성발현 연관 분자마커를 이용한 단성화 참외 선발

  • Bang, Sun-Woong (Department of Life Science, Dongguk University-Seoul) ;
  • Song, Kihwan (Department of Bioresources Engineering, Sejong University) ;
  • Sim, Sung Chur (Department of Bioresources Engineering, Sejong University) ;
  • Chung, Sang Min (Department of Life Science, Dongguk University-Seoul)
  • 방선웅 (동국대학교 생명과학과) ;
  • 송기환 (세종대학교 식물생명공학전공) ;
  • 심성철 (세종대학교 식물생명공학전공) ;
  • 정상민 (동국대학교 생명과학과)
  • Received : 2015.08.21
  • Accepted : 2015.09.24
  • Published : 2016.02.29

Abstract

The DNA marker T1ex, originally developed from melon (Cucumis melo L.) for monoecy, was employed in chamoe, which is referred to as oriental melon. This marker shows size variations in monoecious melon. However, in chamoe, no such detrimental size variation was found in monoecious chamoe, and 99% association between flower phenotypes and genotypes of the T1ex marker was observed in 106 lines of chamoe. To evaluate the efficacy of the T1ex marker for marker-assisted selection (MAS), a total of 240 plants of chamoe breeding lines were screened using the T1ex marker. Among these, 98 varieties were selected. Although the T1ex marker might not be useful for MAS in melon, we found 100% concordance between genotypes and phenotypes for sex expression in chamoe. These results suggest that the T1ex marker will be a useful resource for MAS for monoecy in chamoe.

멜론에서 개발된 단성화 연관 마커인 T1ex를 참외계통 선발에 적용하였다. T1ex 마커가 멜론에서는 단성화에 대해 두 가지 크기의 변이를 보였으나 참외에서는 단일 크기 변이를 보였고 하나의 계통을 제외한 나머지 105 계통에서 단성화와 양성화에 대한 표현형과 유전자형이 99% 일치함을 보였다. 또한 T1ex 단성화 연관마커의 MAS 적용가능성을 확인하기 위해 참외 품종 육성에 이용되고 있는 240개 개체 중 분자마커 선택법으로 선발된 98개체를 비교해 본 결과 표현형과 유전자형이 100% 일치하였고, 이형 유전자형을 조기에 효과적으로 제거 할 수 있음을 확인하였다. 따라서 멜론에서는 적용이 어렵다고 판단된 단성화 연관 마커 T1ex가 참외에서는 계통 육성과정에서 적용 가치가 매우 높다고 평가된다.

Keywords

References

  1. Boualem, A., M. Fergany, R. Fernandez, C. Troadec, A. Martin, H. Morin, M.A. Sari, F. Collin, J.M. Flowers, and M. Pitrat. 2008. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836-838. https://doi.org/10.1126/science.1159023
  2. Doyle, J. and J.L. Doyle. 1987. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem. Bull. 19:11-15.
  3. Feng, H., X.M. Li, Z.Y. Liu, P. Wei, and R.Q. Ji. 2009. A co-dominant molecular marker linked to the monoecious gene CmACS-7 derived from gene sequence in Cucumis melo L. Afr. J. Biotechnol. 8:3168-3174.
  4. Francia, E., G. Tacconi, C. Crosatti, D. Barabaschi, D. Bulgarelli, E. Dall'Aglio, and G. Vale. 2005. Marker assisted selection in crop plants. Plant Cell Tissue Organ. Cult. 82:317-342. https://doi.org/10.1007/s11240-005-2387-z
  5. Kenigsbuch, D. and Y. Cohen. 1990. The inheritance of gynoecy in muskmelon. Genome 33:317-320. https://doi.org/10.1139/g90-049
  6. Kim, N.H., J.Y. Oh, B.H Kim, E.K. Choi, U.S. Hwang, J.E. Staub, S.M. Chung, and Y.H. Park. 2015. The CmACS-7 gene provides sequence variation for the development of DNA markers associated with monoecious sex expression in melon (Cucumis melo L). Hortic. Environ. Biotechnol. 56:535-545. https://doi.org/10.1007/s13580-015-0024-2
  7. Kong, Q., C. Xiang, J. Yang, and Z. Yu. 2011. Genetic variations of Chinese melon landraces investigated with EST-SSR markers. Hortic. Environ. Biotechnol. 52:163-169. https://doi.org/10.1007/s13580-011-0087-7
  8. Li, Z., S. Huang, S. Liu, J. Pan, Z. Zhang, Q. Tao, Q. Shi, Z. Jia, W. Zhang, and H. Chen. 2009. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381-1385. https://doi.org/10.1534/genetics.109.104737
  9. Little, H.A., E. Papadopoulou, S.A. Hammar, and R. Grumet. 2007. The influence of ethylene perception on sex expression in melon (Cucumis melo L.) as assessed by expression of the mutant ethylene receptor, At-etr1-1, under the control of constitutive and floral targeted promoters. Sex. Plant Reprod. 20:123-136. https://doi.org/10.1007/s00497-007-0049-5
  10. Martin, A., C. Troadec, A. Boualem, M. Rajab, R. Fernandez, H. Morin, M. Pitrat, C. Dogimont, and A. Bendahmane. 2009. A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135-1138. https://doi.org/10.1038/nature08498
  11. Perl-Treves, R. 1999. Male to female conversion along the cucumber shoot: approaches to studying sex genes and floral development in Cucumis sativus, p. 189-215. In: C.C. Ainsworth (ed.). Sex determination in plants. Bios Scientific Publ., Oxford, UK.
  12. Pitrat, M., P. Hanelt, and K. Hammer. 2000. Some comments on infra-specific classification of cultivars of melon. In VII Eucarpia Meeting on Cucurbit Genetics and Breeding 510. p. 29-36.
  13. Rauwolf, U., H. Golczyk, J. Meurer, R.G. Herrmann, and S. Greiner. 2008. Molecular marker systems for Oenothera genetics. Genetics 180:1289-1306. https://doi.org/10.1534/genetics.108.091249
  14. Roy, R. and S. Saran. 1990. Sex expression in the Cucurbitaceae, p. 251-268. In: D.M. Bates, R.W. Robinson, and C. Jeffrey (eds.). Biology and utilization of the Cucurbitaceae. Cornell University Press, Ithaca, NY.
  15. Rudich, J., A. Halevy, and N. Kedar. 1972. Ethylene evolution from cucumber plants as related to sex expression. Plant Physiol. 49:998-999. https://doi.org/10.1104/pp.49.6.998
  16. Semagn, K., . Bjornstad, and M. Ndjiondjop. 2006. Progress and prospects of marker assisted backcrossing as a tool in crop breeding programs. Afr. J. Biotechnol. 5:2588-2603.
  17. Slate, J., J. Gratten, D. Beraldi, J. Stapley, M. Hale, and J.M. Pemberton. 2009. Gene mapping in the wild with SNPs: guidelines and future directions. Genetica 136:97-107. https://doi.org/10.1007/s10709-008-9317-z
  18. Trebitsh, T., J.E. Staub, and S.D. O'Neill. 1997. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiol. 113:987-995. https://doi.org/10.1104/pp.113.3.987
  19. Truong, H.T.H., K.T Kim, S. Kim, M.C. Cho, H.R Kim, and J.G. Woo. 2011. Development of gene-based markers for the Bs2 bacterial spot resistance gene for marker-assisted selection in pepper (Capsicum spp.). Hortic. Environ. Biotechnol. 52:65-73. https://doi.org/10.1007/s13580-011-0142-4
  20. Winter, P. and G. Kahl. 1995. Molecular marker technologies for plant improvement. J. Microbiol. Biotechnol. 11:438-448. https://doi.org/10.1007/BF00364619
  21. Yamasaki, S., N. Fujii, S. Matsuura, H. Mizusawa, and H. Takahashi. 2001. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol. 42:608-619. https://doi.org/10.1093/pcp/pce076

Cited by

  1. 참외 전장유전체 염기서열 분석 및 SSR 마커 개발 vol.46, pp.2, 2016, https://doi.org/10.5010/jpb.2019.46.2.071