DOI QR코드

DOI QR Code

RAD-SUPPLEMENTING MODULES

  • 투고 : 2015.02.24
  • 발행 : 2016.03.01

초록

Let R be a ring, and let M be a left R-module. If M is Rad-supplementing, then every direct summand of M is Rad-supplementing, but not each factor module of M. Any finite direct sum of Rad-supplementing modules is Rad-supplementing. Every module with composition series is (Rad-)supplementing. M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension. R is left perfect if and only if R is semilocal, reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is Rad-supplementing if and only if R is reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is ample Rad-supplementing. M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing. Every left R-module is (ample) Rad-supplementing if and only if R/P(R) is left perfect, where P(R) is the sum of all left ideals I of R such that Rad I = I.

키워드

참고문헌

  1. K. Al-Takhman, C. Lomp, and R. Wisbauer, ${\tau}$-complemented and ${\tau}$-supplemented modules, Algebra Discrete Math. (2006), no. 3, 1-16.
  2. F.W. Anderson and K. R. Fuller, Rings and Categories of Modules, New-York, Springer, 1992.
  3. J. Averdunk, Moduln mit Erganzungseigenschaft, Dissertation, Ludwig-Maximilians-Universitat Munchen, Fakultat fur Mathematik, 1996.
  4. I. Beck, Projective and free modules, Math. Z. 129 (1972), 231-234. https://doi.org/10.1007/BF01187350
  5. E. Buyukasik and C. Lomp, Rings whose modules are weakly supplemented are perfect: Applications to certain ring extensions, Math. Scand. 105 (2009), no. 1, 25-30. https://doi.org/10.7146/math.scand.a-15104
  6. E. Buyukasik, E. Mermut, and S. Ozdemir, Rad-supplemented modules, Rend. Semin. Mat. Univ. Padova 124 (2010), 157-177. https://doi.org/10.4171/RSMUP/124-10
  7. E. Buyukasik, R. Tribak, On w-local modules and Rad-supplemented modules, J. Korean Math. Soc. 51 (2014), no. 5, 971-985. https://doi.org/10.4134/JKMS.2014.51.5.971
  8. H. Cartan and S. Eilenberg, Homological Algebra, Princeton Landmarks in Mathematics and Physics series, New Jersey: Princeton Univesity, 1956.
  9. J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules, Frontiers in Mathematics, Basel: Birkhauser Verlag, Supplements and projectivity in module theory, 2006.
  10. E. E. Enochs and O. M. G. Jenda, Relative homological algebra, vol. 30 of de Gruyter Expositions in Mathematics, Berlin: Walter de Gruyter & Co., 2000.
  11. L. Fuchs and L. Salce, Modules over non-Noetherian domains, vol. 84 of Mathematical Surveys and Monographs, Providence, RI: American Mathematical Society, 2001.
  12. F. Kasch and E. A. Mares, Eine Kennzeichnung semi-perfekter Moduln, Nagoya Math. J. 27 (1966), 525-529. https://doi.org/10.1017/S0027763000026350
  13. T. Y. Lam, Lectures on modules and rings, vol. 189 of Graduate Texts in Mathematics, New York: Springer-Verlag, 1999.
  14. T. Y. Lam, A first course in noncommutative rings, vol. 131 of Graduate Texts in Mathematics, New York: Springer-Verlag, 2001.
  15. E. Mermut, Homological Approach to Complements and Supplements, Ph.D. thesis, Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Izmir-Turkey, 2004.
  16. B. L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645-650. https://doi.org/10.2140/pjm.1964.14.645
  17. J. J. Rotman, An Introduction to Homological Algebra, Universitext, New York: Springer, 2009.
  18. Y.Wang and N. Ding, Generalized supplemented modules, Taiwanese J. Math. 10 (2006), no. 6, 1589-1601. https://doi.org/10.11650/twjm/1500404577
  19. R. Wisbauer, Foundations of Module and Ring Theory, Reading: Gordon and Breach, 1991.
  20. W. Xue, Characterization of semiperfect and perfect rings, Publ. Mat. 40 (1996), no. 1, 115-125. https://doi.org/10.5565/PUBLMAT_40196_08
  21. H. Zoschinger, Komplementierte Moduln uber Dedekindringen, J. Algebra 29 (1974), 42-56. https://doi.org/10.1016/0021-8693(74)90109-4
  22. H. Zoschinger, Moduln, die in jeder Erweiterung ein Komplement haben, Math. Scand. 35 (1974), 267-287. https://doi.org/10.7146/math.scand.a-11552