DOI QR코드

DOI QR Code

ON ANNIHILATIONS OF IDEALS IN SKEW MONOID RINGS

  • Mohammadi, Rasul (Department of Pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University) ;
  • Moussavi, Ahmad (Department of Pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University) ;
  • Zahiri, Masoome (Department of Pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University)
  • 투고 : 2015.02.22
  • 발행 : 2016.03.01

초록

According to Jacobson [31], a right ideal is bounded if it contains a non-zero ideal, and Faith [15] called a ring strongly right bounded if every non-zero right ideal is bounded. From [30], a ring is strongly right AB if every non-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property (A) and the conditions asked by Nielsen [42]. It is shown that for a u.p.-monoid M and ${\sigma}:M{\rightarrow}End(R)$ a compatible monoid homomorphism, if R is reversible, then the skew monoid ring R * M is strongly right AB. If R is a strongly right AB ring, M is a u.p.-monoid and ${\sigma}:M{\rightarrow}End(R)$ is a weakly rigid monoid homomorphism, then the skew monoid ring R * M has right Property (A).

키워드

참고문헌

  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
  2. E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  3. F. Azarpanah, O. A. S. Karamzadeh, and A. Rezai Aliabad, On ideals consisting entirely of zero divisors, Comm. Algebra 28 (2000), no. 2, 1061-1073. https://doi.org/10.1080/00927870008826878
  4. J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math. 58 (1975), no. 1, 1-13. https://doi.org/10.2140/pjm.1975.58.1
  5. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  6. G. F. Birkenmeier and J. K. Park, Triangular matrix representations of ring extensions, J. Algebra 265 (2003), no. 2, 457-477. https://doi.org/10.1016/S0021-8693(03)00155-8
  7. G. F. Birkenmeier and R. P. Tucci, Homomorphic images and the singular ideal of a strongly right bounded ring, Comm. Algebra 16 (1988), no. 6, 1099-1122. https://doi.org/10.1080/00927878808823621
  8. V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
  9. J. Clark, Y. Hirano, H. K. Kim, and Y. Lee, On a generalized finite intersection property, Comm. Algebra 40 (2012), no. 6, 2151-2160. https://doi.org/10.1080/00927872.2011.574664
  10. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
  11. L. M. de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, In Proceedings of the 106th National Congress of Learned Societies, 71-73, Bibliotheque Nationale, Paris, 1982.
  12. M. P. Drazin, Rings with central idempotent or nilpotent elements, Proc. Edinburgh Math. Soc. 9 (1958), no. 2, 157-165. https://doi.org/10.1017/S001309150001405X
  13. C. Faith, Algebra II, Springer-Verlag, Berlin., 1976.
  14. C. Faith, Commutative FPF rings arising as split-null extensions, Proc. Amer. Math. Soc. 90 (1984), no. 2, 181-185. https://doi.org/10.1090/S0002-9939-1984-0727228-6
  15. C. Faith, Rings with zero intersection property on annihilator: zip rings, Publ. Math. 33 (1989), no. 2, 329-338. https://doi.org/10.5565/PUBLMAT_33289_09
  16. C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra 19 (1991), no. 7, 1867-1892. https://doi.org/10.1080/00927879108824235
  17. S. P. Farbman, The unique product property of groups and their amalgamated free products, J. Algebra 178 (1995), no. 3, 962-990. https://doi.org/10.1006/jabr.1995.1385
  18. E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. Publ. Math. 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
  19. M. Habibi and R. Manaviyat, A generalization of nil-Armendariz rings, J. Algebra Appl. 12 (2013), no. 6, 1350001, 30 pages.
  20. M. Habibi, A. Moussavi, and A. Alhevaz, The McCoy condition on ore extensions, Comm. Algebra 41 (2013), no. 1, 124-141. https://doi.org/10.1080/00927872.2011.623289
  21. E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 3 (2005), no. 3, 207-224.
  22. M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130. https://doi.org/10.1090/S0002-9947-1965-0194880-9
  23. G. Hinkle and J. A. Huckaba, The generalized Kronecker function ring and the ring R(X), J. Reine Angew. Math. 292 (1977), 25-36.
  24. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52. https://doi.org/10.1016/S0022-4049(01)00053-6
  25. C. Y. Hong, N. K. Kim, T. K. Kwak, and Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (2005), no. 3, 231-242. https://doi.org/10.1016/j.jpaa.2004.08.025
  26. C. Y. Hong, N. K. Kim, and Y. Lee, Extensions of McCoy's Theorem, Glasg. Math. J. 52 (2010), no. 1, 155-159. https://doi.org/10.1017/S0017089509990243
  27. C. Y. Hong, N. K. Kim, Y. Lee, and S. J. Ryu, Rings with Property (A) and their extensions, J. Algebra 315 (2007), no. 2, 612-628. https://doi.org/10.1016/j.jalgebra.2007.01.042
  28. J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker Inc., New York, 1988.
  29. J. A. Huckaba and J. M. Keller, Annihilation of ideals in commutative rings, Pacific J. Math. 83 (1979), no. 2, 375-379. https://doi.org/10.2140/pjm.1979.83.375
  30. S. U. Hwang, N. K. Kim, and Y. Lee, On rings whose right annihilator are bounded, Glasg. Math. J. 51 (2009), no. 3, 539-559. https://doi.org/10.1017/S0017089509005163
  31. N. Jacobson, The Theory of Rings, Amer. Math. Soc., Providence, RI, 1943.
  32. I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
  33. D. Khurana, G. Marks, and K. Srivastava, On unit-central rings, Advances in ring theory, 205-212, Trends Math., Birkhauser/Springer Basel AG, Basel, 2010.
  34. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
  35. T. K. Lee and Y. Zhou, A unified approach to the Armendariz property of polynomial rings and power series rings, Colloq. Math. 113 (2008), no. 1, 151-169. https://doi.org/10.4064/cm113-1-9
  36. T. G. Lucas, Two annihilator conditions: Property (A) and (a.c.), Comm. Algebra 14 (1986), no. 3, 557-580. https://doi.org/10.1080/00927878608823325
  37. G. Marks, Reversible and symmetric rings J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
  38. G. Marks, R. Mazurek, and M. Zimbowski, A unified approach to various generalization of Armendariz rings Bull. Aust. Math. Soc. 81 (2010), no. 3, 361-397. https://doi.org/10.1017/S0004972709001178
  39. R. Mohammadi, A. Moussavi, and M. Zahiti, On nil-semicommutative rings, Int. Electron. J. Algebra 11 (2012), 20-37.
  40. A. Moussavi and E. Hashemi, On (${\alpha}$, ${\delta}$)-skew Armendariz rings, J. Korean Math. Soc. 42 (2005), no. 2, 353-363. https://doi.org/10.4134/JKMS.2005.42.2.353
  41. A. R. Nasr-Isfahani and A. Moussavi, On weakly rigid rings, Glasg. Math. J. 51 (2009), no. 3, 425-440. https://doi.org/10.1017/S0017089509005084
  42. P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
  43. J. Okninski, Semigroup Algebras, Marcel Dekker, New York, 1991.
  44. L. Ouyang, On weak annihilator ideals of skew monoid rings, Comm. Algebra 39 (2011), no. 11, 4259-4272. https://doi.org/10.1080/00927872.2010.522641
  45. Y. Quentel, Sur la compacite du spectre minimal d'un anneau, Bull. Soc. Math. France 99 (1971), 265-272.
  46. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
  47. A. B. Singh, M. R. Khan, and V. N. Dixit, Skew monoid rings over zip rings, Int. J. Algebra 4 (2010), no. 21-24, 1031-1036.
  48. W. Xue, On strongly right bounded finite rings, Bull. Austral. Math. Soc. 44 (1991), no. 3, 353-355. https://doi.org/10.1017/S000497270002983X
  49. W. Xue, Structure of minimal noncommutative duo rings and minimal strongly bounded non-duo rings, Comm. Algebra 20 (1992), no. 9, 2777-2788. https://doi.org/10.1080/00927879208824488
  50. J. M. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc. 57 (1976), no. 2, 213-216. https://doi.org/10.1090/S0002-9939-1976-0419512-6