참고문헌
- D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
- E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
- F. Azarpanah, O. A. S. Karamzadeh, and A. Rezai Aliabad, On ideals consisting entirely of zero divisors, Comm. Algebra 28 (2000), no. 2, 1061-1073. https://doi.org/10.1080/00927870008826878
- J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math. 58 (1975), no. 1, 1-13. https://doi.org/10.2140/pjm.1975.58.1
- H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
- G. F. Birkenmeier and J. K. Park, Triangular matrix representations of ring extensions, J. Algebra 265 (2003), no. 2, 457-477. https://doi.org/10.1016/S0021-8693(03)00155-8
- G. F. Birkenmeier and R. P. Tucci, Homomorphic images and the singular ideal of a strongly right bounded ring, Comm. Algebra 16 (1988), no. 6, 1099-1122. https://doi.org/10.1080/00927878808823621
- V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
- J. Clark, Y. Hirano, H. K. Kim, and Y. Lee, On a generalized finite intersection property, Comm. Algebra 40 (2012), no. 6, 2151-2160. https://doi.org/10.1080/00927872.2011.574664
- P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
- L. M. de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, In Proceedings of the 106th National Congress of Learned Societies, 71-73, Bibliotheque Nationale, Paris, 1982.
- M. P. Drazin, Rings with central idempotent or nilpotent elements, Proc. Edinburgh Math. Soc. 9 (1958), no. 2, 157-165. https://doi.org/10.1017/S001309150001405X
- C. Faith, Algebra II, Springer-Verlag, Berlin., 1976.
- C. Faith, Commutative FPF rings arising as split-null extensions, Proc. Amer. Math. Soc. 90 (1984), no. 2, 181-185. https://doi.org/10.1090/S0002-9939-1984-0727228-6
- C. Faith, Rings with zero intersection property on annihilator: zip rings, Publ. Math. 33 (1989), no. 2, 329-338. https://doi.org/10.5565/PUBLMAT_33289_09
- C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra 19 (1991), no. 7, 1867-1892. https://doi.org/10.1080/00927879108824235
- S. P. Farbman, The unique product property of groups and their amalgamated free products, J. Algebra 178 (1995), no. 3, 962-990. https://doi.org/10.1006/jabr.1995.1385
- E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. Publ. Math. 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
- M. Habibi and R. Manaviyat, A generalization of nil-Armendariz rings, J. Algebra Appl. 12 (2013), no. 6, 1350001, 30 pages.
- M. Habibi, A. Moussavi, and A. Alhevaz, The McCoy condition on ore extensions, Comm. Algebra 41 (2013), no. 1, 124-141. https://doi.org/10.1080/00927872.2011.623289
- E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 3 (2005), no. 3, 207-224.
- M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110-130. https://doi.org/10.1090/S0002-9947-1965-0194880-9
- G. Hinkle and J. A. Huckaba, The generalized Kronecker function ring and the ring R(X), J. Reine Angew. Math. 292 (1977), 25-36.
- Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52. https://doi.org/10.1016/S0022-4049(01)00053-6
- C. Y. Hong, N. K. Kim, T. K. Kwak, and Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (2005), no. 3, 231-242. https://doi.org/10.1016/j.jpaa.2004.08.025
- C. Y. Hong, N. K. Kim, and Y. Lee, Extensions of McCoy's Theorem, Glasg. Math. J. 52 (2010), no. 1, 155-159. https://doi.org/10.1017/S0017089509990243
- C. Y. Hong, N. K. Kim, Y. Lee, and S. J. Ryu, Rings with Property (A) and their extensions, J. Algebra 315 (2007), no. 2, 612-628. https://doi.org/10.1016/j.jalgebra.2007.01.042
- J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker Inc., New York, 1988.
- J. A. Huckaba and J. M. Keller, Annihilation of ideals in commutative rings, Pacific J. Math. 83 (1979), no. 2, 375-379. https://doi.org/10.2140/pjm.1979.83.375
- S. U. Hwang, N. K. Kim, and Y. Lee, On rings whose right annihilator are bounded, Glasg. Math. J. 51 (2009), no. 3, 539-559. https://doi.org/10.1017/S0017089509005163
- N. Jacobson, The Theory of Rings, Amer. Math. Soc., Providence, RI, 1943.
- I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
- D. Khurana, G. Marks, and K. Srivastava, On unit-central rings, Advances in ring theory, 205-212, Trends Math., Birkhauser/Springer Basel AG, Basel, 2010.
- J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
- T. K. Lee and Y. Zhou, A unified approach to the Armendariz property of polynomial rings and power series rings, Colloq. Math. 113 (2008), no. 1, 151-169. https://doi.org/10.4064/cm113-1-9
- T. G. Lucas, Two annihilator conditions: Property (A) and (a.c.), Comm. Algebra 14 (1986), no. 3, 557-580. https://doi.org/10.1080/00927878608823325
- G. Marks, Reversible and symmetric rings J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
- G. Marks, R. Mazurek, and M. Zimbowski, A unified approach to various generalization of Armendariz rings Bull. Aust. Math. Soc. 81 (2010), no. 3, 361-397. https://doi.org/10.1017/S0004972709001178
- R. Mohammadi, A. Moussavi, and M. Zahiti, On nil-semicommutative rings, Int. Electron. J. Algebra 11 (2012), 20-37.
-
A. Moussavi and E. Hashemi, On (
${\alpha}$ ,${\delta}$ )-skew Armendariz rings, J. Korean Math. Soc. 42 (2005), no. 2, 353-363. https://doi.org/10.4134/JKMS.2005.42.2.353 - A. R. Nasr-Isfahani and A. Moussavi, On weakly rigid rings, Glasg. Math. J. 51 (2009), no. 3, 425-440. https://doi.org/10.1017/S0017089509005084
- P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
- J. Okninski, Semigroup Algebras, Marcel Dekker, New York, 1991.
- L. Ouyang, On weak annihilator ideals of skew monoid rings, Comm. Algebra 39 (2011), no. 11, 4259-4272. https://doi.org/10.1080/00927872.2010.522641
- Y. Quentel, Sur la compacite du spectre minimal d'un anneau, Bull. Soc. Math. France 99 (1971), 265-272.
- M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
- A. B. Singh, M. R. Khan, and V. N. Dixit, Skew monoid rings over zip rings, Int. J. Algebra 4 (2010), no. 21-24, 1031-1036.
- W. Xue, On strongly right bounded finite rings, Bull. Austral. Math. Soc. 44 (1991), no. 3, 353-355. https://doi.org/10.1017/S000497270002983X
- W. Xue, Structure of minimal noncommutative duo rings and minimal strongly bounded non-duo rings, Comm. Algebra 20 (1992), no. 9, 2777-2788. https://doi.org/10.1080/00927879208824488
- J. M. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc. 57 (1976), no. 2, 213-216. https://doi.org/10.1090/S0002-9939-1976-0419512-6