DOI QR코드

DOI QR Code

ON A GENERALIZATION OF HIRZEBRUCH'S THEOREM TO BOTT TOWERS

  • Kim, Jin Hong (Department of Mathematics Education Chosun University)
  • 투고 : 2014.12.25
  • 발행 : 2016.03.01

초록

The primary aim of this paper is to generalize a theorem of Hirzebruch for the complex 2-dimensional Bott manifolds, usually called Hirzebruch surfaces, to more general Bott towers of height n. To do so, we first show that all complex vector bundles of rank 2 over a Bott manifold are classified by their total Chern classes. As a consequence, in this paper we show that two Bott manifolds $B_n({\alpha}_1,{\ldots},{\alpha}_{n-1},{\alpha}_n)$ and $B_n({\alpha}_1,{\ldots},{\alpha}_{n-1},{\alpha}_n^{\prime})$ are isomorphic to each other, as Bott towers if and only if both ${\alpha}_n{\equiv}{\alpha}_n^{\prime}$ mod 2 and ${\alpha}_n^2=({\alpha}_n^{\prime})^2$ hold in the cohomology ring of $B_{n-1}({\alpha}_1,{\ldots},{\alpha}_{n-1})$ over integer coefficients. This result will complete a circle of ideas initiated in [11] by Ishida. We also give some partial affirmative remarks toward the assertion that under certain condition our main result still holds to be true for two Bott manifolds just diffeomorphic, but not necessarily isomorphic, to each other.

키워드

참고문헌

  1. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458-538. https://doi.org/10.2307/2372795
  2. R. Bott and H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029. https://doi.org/10.2307/2372843
  3. R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Grad. Texts Math. 82, Springer, 1982.
  4. V. Buchstaber and T. Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series, Vol. 24, Amer. Math. Soc., Providence, Rhode Island, 2002.
  5. S. Choi and M. Masuda, Classification of ${\mathbb{Q}}$-trivial Bott towers, J. Symp. Geom. 10 (2012), no. 3, 447-462.
  6. S. Choi, M. Masuda, and S. Murai, Invariance of Pontrjagin classes for Bott manifolds, Algebr. Geom. Topol. 15 (2015), 965-986. https://doi.org/10.2140/agt.2015.15.965
  7. Y. Civan and N. Ray, Homotopy decompositions and K-theory of Bott towers, K-theory 34 (2005), no. 1, 1-33. https://doi.org/10.1007/s10977-005-1551-x
  8. M. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds, and torus actions, Duke Math. J. 62 (1991), no. 2, 417-451. https://doi.org/10.1215/S0012-7094-91-06217-4
  9. M. Grossberg and Y. Karshon, Bott towers, complete integrability, and the extended character of representations, Duke Math. J. 76 (1994), no. 1, 23-58. https://doi.org/10.1215/S0012-7094-94-07602-3
  10. F. Hirzebruch, Uber eine Klasse von einfachzusammenhangenden komplexen Mannigfaltigkeiten, Math. Ann. 124 (1951), 77-86. https://doi.org/10.1007/BF01343552
  11. H. Ishida, Filtered cohomological rigidity of Bott towers, Osaka J. Math. 49 (2012), no. 2, 515-522.
  12. J.-H. Kim, On a generalized Petrie's conjecture via index theorems, Topology Appl. 160 (2013), no. 12, 1353-1363. https://doi.org/10.1016/j.topol.2013.05.011
  13. S. Kuroki and D. Y. Suh, Cohomological non-rigidity of eight-dimensional complex projective towers, Algebr. Geom. Topol. 15 (2015), no. 2, 769-782. https://doi.org/10.2140/agt.2015.15.769
  14. M. Masuda and T. Panov, Semi-free circle actions, Bott towers, and quasitoric manifolds, Sb. Math. 199 (2008), no. 7-8, 1201-1223. https://doi.org/10.1070/SM2008v199n08ABEH003959
  15. M. Masuda and D. Y. Suh, Classification problems of toric manifolds via topology, Toric topology, 273-286, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008. https://doi.org/10.1090/conm/460/09024
  16. J. Morrow and K. Kodaira, Complex manifolds, AMS Chelsea Publishing, Amer. Math. Soc., Providence, Rhode Island, 1971.
  17. T. Petrie, Smooth S1 actions on homotopy complex projective spaces and related topics, Bull. Amer. Math. Soc. 78 (1972), 105-153. https://doi.org/10.1090/S0002-9904-1972-12898-2
  18. T. Petrie, Torus actions on homotopy complex projective spaces, Invent. Math. 20 (1973), 139-146. https://doi.org/10.1007/BF01404062
  19. F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Company, Illinois, 1971.