DOI QR코드

DOI QR Code

절리의 방향분포가 이차원 DFN 시스템의 수리적 특성에 미치는 영향

Effect of Joint Orientation Distribution on Hydraulic Behavior of the 2-D DFN System

  • 한지수 (부경대학교 에너지자원공학과) ;
  • 엄정기 (부경대학교 에너지자원공학과)
  • Han, Jisu (Department of Energy Resources Engineering, Pukyong National University) ;
  • Um, Jeong-Gi (Department of Energy Resources Engineering, Pukyong National University)
  • 투고 : 2016.01.13
  • 심사 : 2016.02.21
  • 발행 : 2016.02.28

초록

본 연구는 절리의 방향분포가 절리성 암반의 수리적 특성에 미치는 영향을 평가하기 위하여 등가파이프 연결구조에 기반을 둔 이차원 DFN(discrete fracture network) 유체유동 해석 프로그램 코드를 개발하고 수치실험을 수행하였다. 수치실험에 사용된 이차원 DFN 시스템은 경계효과를 고려하여 $32m{\times}32m$ 영역의 중앙에서 $20m{\times}20m$ 크기의 DFN 블록이다. 두 절리군을 사용하여 절리의 빈도와 길이분포를 고정하고 절리군 선주향의 평균과 표준편차를 달리하며 추계론적으로 생성한 총 15개의 DFN 블록에 대하여 매 $30^{\circ}$ 간격으로 회전하면서 총 12 방향으로 구현한 총 180개 DFN 블록에서 블록수리전도도가 산정되었다. 또한, 각각의 DFN 블록에서 이론적 블록수리전도도, 주 수리전도도텐서 및 평균블록수리전도도를 추정하여 비교분석한 결과, 절리군의 평균 교차각이 작을수록 절리 방향분포의 변동성이 이차원 DFN 시스템의 등가연속체 취급 가능성 및 블록수리전도 특성에 더욱 영향을 미치는 것으로 평가되었다.

A program code was developed to calculate block hydraulic conductivity of the 2-D DFN(discrete fracture network) system based on equivalent pipe network, and implemented to examine the effect of joint orientation distribution on the hydraulic characteristics of fractured rock masses through numerical experiments. A rock block of size $32m{\times}32m$ was used to generate the DFN systems using two joint sets with fixed input parameters of joint frequency and gamma distributed joint size, and various normal distributed joint trend. DFN blocks of size $20m{\times}20m$ were selected from center of the $32m{\times}32m$ blocks to avoid boundary effect. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$. The directional block conductivity including the theoretical block conductivity, principal conductivity tensor and average block conductivity were estimated for generated 180 2-D DFN blocks. The effect of joint orientation distribution on block hydraulic conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the decrease of mean intersection angle of the two joint sets. The effect of variability of joint orientation on block hydraulic conductivity could not be ignored for the DFN having low intersection angle between two joint sets.

키워드

참고문헌

  1. Andersson, J. and Dverstorp, B. (1987) Conditional simulations of fluid flow in three dimensional networks of discrete fractures. Water Resour. Res. v.23, p.1876-1886. https://doi.org/10.1029/WR023i010p01876
  2. Bang, S., Jeon, S. and Choe, J. (2003) Determination of equivalent hydraulic conductivity of rock mass using three-dimensional discontinuity network, J. of Korean Society for Rock Mech., v.13, p.52-63.
  3. Berkowitz, B. (2002) Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. Res. v.25, p.861-884. https://doi.org/10.1016/S0309-1708(02)00042-8
  4. Cacas, M.C., Ledoux, E., de Marsily, G., Tillie, B., Barbreau, A., Durand, E., Feuga, B. and Peaudecerf, P. (1990) Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model. Water Resour. Res. v.26, p.479-489.
  5. Dershowitz, W. and Miller, I. (1995) Dual porosity fracture flow and transport. Geophys. Res. Lett. v.22, p.1441-1444. https://doi.org/10.1029/95GL01099
  6. Han, J. and Um, J. (2015) Characteristics of block hydraulic conductivity of 2-D DFN system according to block size and fracture geometry, J. of Korean Society for Rock Mech., v.25, p.450-461.
  7. Haws, N.W., Rao, P.S.C., Simunek, J. and Poyer, I.C. (2005) Single-porosity and dual-porosity modeling of water flow and solute transport in subsurface-drained fields using effective field-scale parameters. J. Hydrol. v.313, p.257-273. https://doi.org/10.1016/j.jhydrol.2005.03.035
  8. Jing, L. (2003) A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. v.40, p.283-353. https://doi.org/10.1016/S1365-1609(03)00013-3
  9. Jing, L. and Hudson, J. (2002) Numerical methods in rock mechanics. Int. J. Rock Mech. Min. Sci. v.39, p.409-427. https://doi.org/10.1016/S1365-1609(02)00065-5
  10. Kantani, K. (1984) Distribution of directional data and fabric tensors, Int. J. Engng Sci. v.22, p.149-164. https://doi.org/10.1016/0020-7225(84)90090-9
  11. Li, L.C., Tang, C.A., Wang, S.Y. and Yu, J. (2013) A coupled thermo-hydrologic-mechanical damage model and associated application in a stability analysis on a rock pillar. Tunn. Undergr. Sp. Tech. v.34, p.38-53. https://doi.org/10.1016/j.tust.2012.10.003
  12. Long, J.C.S., Gilmour and P., Witherspoon, P.A. (1985) A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures. Water Resour. Res. v.21, p.1105-1115. https://doi.org/10.1029/WR021i008p01105
  13. Long, J.C.S., Remer, J.S., Wilson, C.R. and Witherspoon, P.A. (1982) Porous Media Equivalents for networks of Discontinuous fractures. Water Resour. Res. v.18, p.645-658. https://doi.org/10.1029/WR018i003p00645
  14. Neuman, S.P. (2005) Trands, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J. v.13, p.124-147. https://doi.org/10.1007/s10040-004-0397-2
  15. Oda, M. (1985) Permeability tensor for discontinuous rock masses. Geotechnique. v.35, p.483-495. https://doi.org/10.1680/geot.1985.35.4.483
  16. Panda, B.B. and Kulatilake, P.H.S.W. (1999) Effect of joint geometry and transmissivity on jointed rock hydraulics, J. Eng. Mech. v.125, p.41-50. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:1(41)
  17. Priest, S.D. (1993) Discontinuity Analysis for Rock Engineering, Chapman & Hall, London, 473p.
  18. Pruess, K., Wang, J.S.Y. and Tsang, Y.W. (1990a) On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff: 1. Simulation studies with explicit consideration of fracture effects. Water Resour. Res. v.26, p.1235-1248.
  19. Pruess, K., Wang, J.S.Y. and Tsang, Y.W. (1990b) On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff: 2. Effective continuum approximation. Water Resour. Res. v.26, p.1249-1261.
  20. Rouleau, A. and Gale, J.E. (1987) Stochastic discrete fracture simulation of ground water flow into an underground excavation in granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. v.24, p.99-112.
  21. Sahimi, M. (1993) Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. v.65, p.1393. https://doi.org/10.1103/RevModPhys.65.1393
  22. Schwartz, F.W., Smith, W.L. and Crowe, A.S. (1983) A stochastic analysis of microscopic dispersion in fractured media. Water Resour. Res. v.19, p.1253-1265. https://doi.org/10.1029/WR019i005p01253

피인용 문헌

  1. Effect of Joint Aperture Variation on Hydraulic Behavior of the 2-D DFN System vol.26, pp.4, 2016, https://doi.org/10.7474/TUS.2016.26.4.283