DOI QR코드

DOI QR Code

Types and Characteristics of Fibrous Serpentine Minerals Occurred in Serpentinite in Hongseong and Gapyeong

홍성과 가평 사문암 내에서 섬유상으로 산출되는 사문석군 광물의 종류 및 특성

  • Jeong, Hyewon (Center for Asbestos and Environment, Chonnam National University) ;
  • Kang, Serku (Department of Geological and Environmental Sciences, Chonnam National University) ;
  • Roh, Yul (Center for Asbestos and Environment, Chonnam National University)
  • 정혜원 (전남대학교 석면환경센터) ;
  • 강서구 (전남대학교 지질환경과학과) ;
  • 노열 (전남대학교 석면환경센터)
  • Received : 2015.12.10
  • Accepted : 2016.02.24
  • Published : 2016.02.28

Abstract

Chrysotile is well known as a fibrous mineral in serpentinite by the previous studies in S. Korea. Previous studies in other countries showed that antigorite also occurred as asbestiform and harmful to humans. Therefore, the objective of this study was to investigate types and characteristics of fibrous serpentine minerals occurred in serpentinite in Hongseong, Chungnam and Gapyeong, Gyeonggi in S. Korea. XRD, SEM-EDS, PLM and EPMA mapping analyses were used to examine the occurrence and formation mechanism of serpentine minerals. Serpentinization partially occurred in amphibole-schist and calc-schist at two study sites, Hongseong, Chungnam and Gapyeong, Gyeonggi, respectively. Both chrysotile and antigorite occurred as a fibrous mineral at Hongseong site, but chrysotile occurred as a fibrous mineral at Gapyeong site. Based on PLM analysis with dispersion staining, the chrysotile was observed horizontally magenta and vertically blue colors. The antigorite appeared as horizontally gold to golden magenta and vertically blue magenta colors under central stop dispersion staining objective(DSO). PLM and SEM analyses showed the fibrous minerals were formed from plate form of serpentine minerals or by hydrothermal alternation of primary minerals. The EPMA mapping showed that Mg contents in chrysotile is relatively higher than that in antigorite while Si and O contents in antigorite is higher than them in chrysotile. However, more studies are necessary to know the exact variation in chemical composition of chrysotile and antigorite. These results indicate that even though asbestiform antigorite found associated with asbestos chrysotile in serpentinites, the fibrous antigorite can be distinguished from chrysotile by different dispersion staining colors.

사문석군 광물과 관련된 국내 선행 연구에 따르면 일반적으로 크리소타일(chrysotile)이 섬유상으로 산출되는 것으로 알려져 있다. 하지만 국외에서 섬유상 안티고라이트(antigorite)의 산출이 보고되었으며 이로 인한 인체의 유해성에 대한 연구가 현재 진행되고 있다. 따라서, 이 연구에서는 국내 홍성과 가평지역의 사문암 내에서 섬유상으로 산출되는 사문석군 광물의 종류와 광물학적 및 화학적 특성을 XRD, SEM-EDS, PLM, EPMA 분석을 통해 확인하고, 이를 통해 사문석군 광물의 산출양상 및 형성과정을 규명하고자 하였다. 연구지역인 홍성은 각섬석 편암이 부분적으로 사문암화 또는 활석화 되어 있으며, 가평은 석회질 편암이 사문석화 작용을 받아 석회암 및 각섬암 내 사문암대를 형성하고 있다. 연구 결과, 홍성에서는 크리소타일과 안티고라이트가 섬유상으로, 가평에서는 크리소타일이 섬유상으로 산출되는 것으로 확인되었다. 분산염색법을 이용한 편광현미경 분석 결과, 크리소타일은 섬유 길이방향($n{\parallel}$)에서 자주색(magenta), 섬유 지름방향($n{\perp}$)에서 파란색(blue)의 분산염색색상을 보였고, 안티고라이트는 섬유 길이방향($n{\parallel}$)에서 진한 노란색-자주색(gold to golden magenta), 섬유 지름방향($n{\perp}$)에서 blue magenta의 분산염색색상을 나타냈다. 또한 박편관찰 및 SEM 분석을 통해 판상의 사문석 또는 암석 내 1차 광물이 열수변질작용을 받아 섬유상의 광물을 형성한 것으로 판단된다. EPMA mapping 분석 결과, Mg 성분은 크리소타일이 안티고라이트보다 상대적으로 높았으며 Si와 O 성분은 안티고라이트가 크리소타일보다 높은 것으로 확인되었다. 하지만 두 광물의 화학성분 차이를 정확히 알기 위해서는 많은 시료의 통계적인 분석 값이 필요할 것으로 생각된다. 이러한 결과를 통해 섬유상의 안티고라이트(antigorite)는 X-선 회절 패턴과 형태적 특성이 크리소타일(chrysotile)과 비슷하여 혼동될 수 있으나, 서로 다른 분산염색색상을 나타내므로 분산염색법을 이용한 편광현미경 분석을 통해 두 광물의 구별이 가능한 것으로 확인되었다.

Keywords

References

  1. Ann, J.H. (2009) Crystal Structures and Mophological Characteristics of Asbestos. Asbestos academy of Korea, v.1, p.10-17.
  2. Bae, S.W., Hwang, J.Y., Lee, S.K., Kwack, K.W., Yoon, J.H. and Cho, S.H. (2008) Occurrence and Mineralogy of Serpentine Minerals in the Calc-silicate Rock Sheets from the Bonghwa Area, Kyungsangbuk-do. J. Miner. Soc. Korea., v.21(1), p.85-98.
  3. Cardile, V., Lombardo, L., Belluso, E., Panico, A., Capella, S. and Balazy, M. (2007) Toxicity and carcinogenicity mechanisms of fibrous antigorite. International journal of environmental research and public health, v.4(1), p.1-9. https://doi.org/10.3390/ijerph2007010001
  4. Choi, J.B. (2009) Type and Classification System of Asbestos. Asbestos academy of Korea, v.1, p.1-9.
  5. Deer, W.A., Howie, R.A. and Zussman, J. (1992) An introduction to the rock-forming minerals. Longman Scientific & Technical, London, 712p.
  6. Hwang, J.Y. (2002) Characteristics and utilization of serpentine. J. Miner. Soc. Korea., v.15(2), p.48-54.
  7. Hwang, J.Y., Kim, J.J. and Ock, S.S. (1993) Genesis and Mineralogy of the Serpentinite Deposits in the Andong Area, Korea. Jour. Korean Inst. Mining Geol., v.26(1), p.690-699.
  8. Kim, B.G., Lee, S.M., So, C.S. and Sin, M.S. (1974) Explanatory text of the geological map of Yonduri sheet (1:50,000). Geological and Mineral institute of Korea, Korea, 16p.
  9. Koh, S.M. (2009) Genetic Environment and Occurrence of Asbestos. Asbestos academy of Korea, v.1, p.18-34.
  10. Koh, S.M., Park, C.K. and Soh, W.J. (2006) Preliminary Study on the Formation Environment of Serpentinite occurring in Ulsan Area. J. Miner. Soc. Korea, v.19(4), p.325-336.
  11. Lee, C.H. and Kim, S.S. (1963) Explanatory text of the geological map of Hong song sheet (1:50.000). Geological survey of Korea, Korea, 33p.
  12. Moon, H.S. (1996) Clay Mineralogy. Minumsa, Koera, 650p.
  13. Nemecz, E. (1981) Clay minerals. Akademiai Kiado, Hungary, 547p.
  14. O'hanley, D.S. and Wicks, F.J. (1995) Conditions of formation of lizardite, chrysotile and antigorite, Cassiar, British Columbia. The Canadian Minerologist, v.33(4), p.753-773.
  15. Page, N.J. and Park, M. (1968) Chemical differences among the serpentine "Polymorphs". American Mineralogist, v.53, p.201-215.
  16. Park, G.N., Hwang, J.Y., Oh, J.H. and Lee, H.M. (2012) Occurrence and Mineralogy of Serpentinite from Bibong Mine in Chungyang Area, Korea. J. Miner. Soc. Korea., v.25(1), p.9-21. https://doi.org/10.9727/jmsk.2012.25.1.009
  17. Pugnaloni, A., Giantomassi, F., Lucarini, G., Capella, S., Belmonte, M., Orciani, M. and Belluso, E. (2010) Effect of asbestiform antigorite on human alveolar epithelial A549 cells: A morphological and immunohistochemical study. Acta histochemica., v.112(2), p.133-146. https://doi.org/10.1016/j.acthis.2008.10.002
  18. Song, S.H., Hwang, J.H., Hwang, B.G. and Kim, H.W. (2008) Occurrence types and mineralogical characteristics of asbestos for the Kwangcheon area, Chungnam. Jour. Korean. Soc. Occup Environ Hyg., v.18(4), p.271-281.
  19. Thomas, J.M. and Midgley, P.A. (2004) High-resolution transmission electron microscopy: the ultimate nanoanalytical technique. Chemical Communications., v.11, p.1253-1267.
  20. Whittaker, E.J.W. and Zussman, J. (1956) The characterization of serpentine minerals by X-ray diffraction. Mineralogical Magazine., v.31(233), p.1025-1047.
  21. Woo, Y.K. and Ka, Y.S. (2003) Serpentinization of Serpentinites on Hongseong-Kwangcheon-Gwangsi Serpentine Ore Deposits, Choongnam, Korea., v.34, p.167-180.
  22. Woo, Y.K. and Kim, S.H. (2003) Original Rock and Serpentinization of Serpentinites on Serpentine Ore Deposits in Cheongyang, Choonam, Korea., v.34, p.181-196.
  23. Woo, Y.K. and Suh, M.C. (2000) Petrological Study on the Ultramafic Rocks in Choongnam Area. Jour. Korean Earth Science Society., v.21(3), p.323-336.