DOI QR코드

DOI QR Code

Comparison of the Effects of Straight and Twisted Heat Trace Installations Based on Three-dimensional Unsteady Heat Transfer

열선의 직선시공과 감기시공의 동파방지 효과 비교를 위한 3차원 비정상 수치해석

  • Choi, Myoung-Young (Fire Insurers Laboratories of Korea) ;
  • Jeon, Byoung-Jin (Integrative Cardiovascular Imaging Research Center, Yonsei Cardiovascular Center, College of Medicine, Yonsei University) ;
  • Choi, Hyoung-Gwon (Dept. of Mechanical & Automotive Engineering, Seoul National Univ. of Science & Technology)
  • 최명영 (한국화재보험협회 부설 방재시험연구원) ;
  • 전병진 (연세대학교 의과대학, 심장융합영상연구센터) ;
  • 최형권 (서울과학기술대학교 기계자동차공학과)
  • Received : 2015.12.03
  • Accepted : 2016.02.04
  • Published : 2016.02.29

Abstract

This paper numerically examines, straight and twisted electrical heat trace installations for their anti-freezing effects on water inside a pipe. The unsteady incompressible Navier-Stokes equations coupled with an energy equation were solved to compare the two installation methods. The heat conduction of the pipe with a heat source interacts with the natural convection of the water, and the conjugate heat transfer was considered using a commercial code (ANSYS-FLUENT) based on a SIMPLE-type algorithm. Numerical experiments, were done to investigate the isotherms and the vector fields in the water region to extract the evolutions of the minimum and maximum temperatures of the water inside the pipe. There was no substantial difference in the anti-freezing effects between the straight and twisted. Therefore, the straight installation is recommended after considering the damage and short circuit behavior of the electrical heat trace.

본 논문에서는 동절기 소방배관의 동파방지를 위한 열선의 직선 시공과 감기 시공의 효과를 수치해석을 통하여 분석하였다. 두 시공법들의 효과 분석을 위하여 3차원 에너지방정식과 비정상 비압축성 Navier-Stokes 방적식의 비정상 해를 구하였다. 수치해석에서 물의 자연대류와 소방 배관의 열전도 방정식이 상호작용을 하므로 복합열전달 해석을 상용코드 ANSYS-FLUENT에서 제공하는 압력-속도 연성기법들 중의 하나인 SIMPLE 알고리즘을 이용하여 수행하였다. 수치해석을 통하여 시간에 따른 배관 내의 유동장 및 온도분포와 배관 내 물의 최대 및 최소온도 변화를 고찰하였다. 수치해석 결과 배관 단위 길이 당 투입열량이 동일한 경우에 감기 시공과 직선 시공의 동파방지 효과는 거의 동일함을 확인하였다. 따라서, 열선 손상과 단락 등을 고려하면 직선 시공이 더 나은 시공법이라 판단된다.

Keywords

References

  1. M. Y. Choi, D. W. Lee and H. G. Choi, "Numerical Analysis of Unsteady Heat Transfer for the Location Selection of Anti-freeze for the Fire Protection Piping with Electrical Heat Trace", Fire Sci. Eng., Vol. 28, No. 1, pp. 52-57 (2014). https://doi.org/10.7731/KIFSE.2014.28.1.052
  2. A. K. De and A. Dalal, "A Numerical Study of Natural Convection Around a Square, Horizontal, Heated Cylinder Placed in a Enclosure", Int. J. Heat and Mass Transfer, Vol. 49, Issues 23-24, pp. 4608-4623 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2006.04.020
  3. M. Y. Ha, I. K. Kim, H. S. Yoon and S. S. Lee, "Unsteady Fluid Flow and Temperature Fields in a Horizontal Enclosure with an Adiabatic Body", Physics of Fluids, Vol. 14, No. 9, pp. 3189-3202 (2002). https://doi.org/10.1063/1.1497168
  4. M. Y. Ha, I. K. Kim, H. S. Yoon, K. S. Yoon, J. R. Lee, S. Balachandar and H. H. Chum, "Two-Dimensional and Unsteady Natural Convection in a Horizontal Enclosure with a Square Body", Numerical Heat Transfer, Vol. 41, pp. 183-210 (2002). https://doi.org/10.1080/104077802317221393
  5. R. Kumar, "Study of Natural Convection in Horizontal Annuli", International Journal of Heat and Mass Transfer, Vol. 31, No. 6, pp. 1137-1148 (1988). https://doi.org/10.1016/0017-9310(88)90056-7
  6. A. Liaqat and A. C. Baytas, "Conjugate Natural Convection in a Square Enclosure Containing Volumetric Sources", Int. J. Heat Mass Transfer, Vol. 44, Issues 17, pp. 3273-3280 (2001). https://doi.org/10.1016/S0017-9310(00)00345-8
  7. Mikhail A. Sheremet, "Laminar Natural Convection in an Inclined Cylindrical Enclosure Having Finite Thickness Walls", Int. J. Heat and Mass Transfer, Vol. 55, Issues 23-24, pp. 3582-3600 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.046
  8. T. H. Kuehn and R. J. Goldstein, "Numerical Solution to the Navier-Stokes Equations for Laminar Natural Convection about a Horizontal Isothermal Circular Cylinder", International Journal of Heat and Mass Transfer, Vol. 23, No. 7, pp. 971-979 (1980). https://doi.org/10.1016/0017-9310(80)90071-X
  9. ANSYS Co., ANSYS Fluent User's Guide 13.2.4 (2012).
  10. I. S. Jeong and W. Y. Song, "An Analysis of Unsteady 2-D Heat Transfer of the Thermal Stratification Flow inside Horizontal Pipe with Electrical Heat Tracing", Journal of Korea Society for Energy Engineering, Vol. 6, No. 2, pp. 119-128 (1997).
  11. ISO 65, Carbon steel tubes suitable for screwing in accordance with ISO 7-1.
  12. KS D 3507, Carbon steel pipes for ordinary piping (2008).
  13. KS L 9016, Test methods for thermal transmission properties of thermal insulations (2012).
  14. R. R. Gilpin, "Ice Formation in a Pipe Containing Flows in the Transition and Turbulent Regimes", Journal of Heat Transfer, Vol. 103, pp. 363-368 (1981). https://doi.org/10.1115/1.3244467
  15. ANSI/IEEE Std. 515, Standard for the Testing, Design, Installation and Maintenance of Electrical Resistance Heat Tracing for Industrial Applications (2005).
  16. ANSI/IEEE Std. 844, Recommended Practice for Electrical Impedance, Induction, and Skin Effect Heating of Pipelines and Vessels (2000).
  17. ANSI/NECA 202, Recommended Practice for Installing and Maintaining Industrial Heat Tracing Systems (2001).
  18. NFPA 70, National Electrical Code 427.1 (2008).