DOI QR코드

DOI QR Code

A Study of Optical Characteristics for Biodiesel and Diesel Smoke Particles and Measuring their Dimensionless Light Extinction Constants

바이오디젤과 디젤 연기입자의 광학특성 및 무차원 광소멸계수 측정에 관한 연구

  • Choi, Seuk-Cheun (Thermochemical Energy System R&D Group, Korea Institute of Industrial Technology) ;
  • Jang, Yeong-Seok (Thermochemical Energy System R&D Group, Korea Institute of Industrial Technology) ;
  • Park, Seul-Hyun (Department of Mechanical Systems Engineering, Chosun University) ;
  • Kim, Youn-Kyu (Convergence Technology Research Head Office, Korea Aerospace Research Institute)
  • 최석천 (한국생산기술연구원 고온에너지시스템연구그룹) ;
  • 장영석 (한국생산기술연구원 고온에너지시스템연구그룹) ;
  • 박설현 (조선대학교 기계시스템공학과) ;
  • 김연규 (한국항공우주연구원 융합기술연구본부)
  • Received : 2015.11.17
  • Accepted : 2015.11.29
  • Published : 2016.02.29

Abstract

The dimensionless extinction constants of smoke particles produced from burning of soy methyl ester (B100) biodiesel and ultra low sulfur diesel (ULSD) fuels were measured. To this end, optical measurements of smoke volume fraction with the aid of a He-Ne laser at 633 nm were compared to the simultaneous gravimetric measurements. The average value of measured dimensionless extinction constants at 633 nm was 11.8 for biodiesel smoke particles and 11.1 for diesel smoke particles, respectively whose values are very comparable withing the range of measurement uncertainty (${\pm}10.1%$). The analysis of Raman spectroscopy revealed that overall characteristics of light extinction between particles produced from each fuel may differ from each other.

바이오디젤(Soy Methyl Ester, B100)과 디젤(Ultra Low Sulfur Diesel, ULSD)의 연소과정에서 발생되는 연기입자의 무차원 광소멸계수를 측정하였다. 무차원 광소멸계수는 633 nm의 He-Ne 레이저를 이용하여 광학적 방법으로 측정된 연기입자의 체적분율과 중력식 필터법에 의해 채집된 연기입자의 체적분율을 비교하여 결정하였다. 633 nm 대역에서 측정된 평균 무차원 광소멸계수는 각각 바이오디젤의 연기입자가 11.8, 디젤 연기입자가 11.1으로 측정 불확도 범위(${\pm}10.1%$) 내에서 거의 유사하였다. 다만, 라만 spectrum 분석결과를 통해 각 연료에서 발생된 연기입자 간의 광소멸(광흡수/광산란) 특성은 서로 상이할 수 있음을 확인할 수 있었다.

Keywords

References

  1. A. Demirbas, "Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues", Prog. Energy Combust., Vol. 31, pp. 171-192 (2005). https://doi.org/10.1016/j.pecs.2005.02.002
  2. J. H. Bae, "Forecasting the Competitiveness of Biodiesel in Korea", Korean Energy Economic Review, Vol. 7, No. 4, pp. 101-131 (2008)
  3. A. K. Agarwal, "Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion", Engines. Prog. Energy Combust., Vol. 33, pp. 233-271 (2007). https://doi.org/10.1016/j.pecs.2006.08.003
  4. T. D. Durbin, J. R. Collins and M. R. Smith, "Effects of Biodiesel Blends, and a Synthetic Diesel on Emissions from Light Heavy-duty Diesel Vehicles", Environmental Science & Technology, Vol. 34, pp. 349-355 (2000). https://doi.org/10.1021/es990543c
  5. J. Song, M. Alam, A. Boehman and U. Kim, "Examination of the Oxidation behavior of Biodiesel Soot", Combust. Flame, Vol. 146, No. 4, pp. 589-604 (2006). https://doi.org/10.1016/j.combustflame.2006.06.010
  6. A. Boehman, J. Song and M. Alam, "Impact of Biodiesel Blending on Diesel Soot and the Regeneration of Particulate Filters", Energy and Fuels, Vol. 19, No. 5, pp. 1857-1864 (2005). https://doi.org/10.1021/ef0500585
  7. N. A. Marley, J. S. Gaffney, J. C. Baird, C. A. Blazer, P. J. Drayton and J. E. Frederick, "An Empirical Method for the Determination of the Complex Refractive Index of Size-fractionated Atmospheric Aerosols for Radiative Transfer Calculations", Aerosol Science and Technology, Vol. 34, No. 6, pp. 535-549 (2001). https://doi.org/10.1080/02786820118599
  8. Q. Feng, A. Jalal, A. M. Fincham, Y. L. Wang, T. T. Tsotsis and F. N. Egolfopoulos, "Soot Formation in Flames of Model Biodiesel", Combust. Flame, Vol. 159, pp. 1896-1893 (2012).
  9. K. C. Smyth and C. R. Shaddix, "The Elusive History of m = 1.57-0.56i for the Refractive Index of Soot", Combust. Flame, Vol. 107, pp. 314-320 (1996). https://doi.org/10.1016/S0010-2180(96)00170-8
  10. J. Y. Zhu, M. Y. Choi, G. W. Mulholland and L. A. Gritzo, "Measurement of Soot Optical Properties in the Near-infrared Spectrum", International Journal of Heat and Mass Transfer, Vol. 43, pp. 3299-3303 (2000). https://doi.org/10.1016/S0017-9310(99)00382-8
  11. M. Y. Choi, G. W. Mulholland and T. Kashiwagi, "Comparisons of the Soot Volume Fraction Using Gravimetric and Light Extinction Techniques", Combust. Flame, Vol. 102, pp. 161-169 (1995). https://doi.org/10.1016/0010-2180(94)00282-W
  12. E. M. Patterson, R. M. Duckworth, C. M. Wyman, E. A. Powell and J. W. Gooch, "Measurements of the Optical Properties of the Smoke Emissions from Plastics Hydrocarbons", Atmospheric Environment, Vol, 24, No, 11, pp. 2539-2552 (1991).
  13. M. O. Andreae and A. Gelencser, "Black Carbon or Brown Carbon? The Nature of Light-absorbing Carbonaceous Aerosols", Atmospheric Chemistry and Physics, Vol. 6, pp. 3131-3148 (2006). https://doi.org/10.5194/acp-6-3131-2006
  14. S. C. Choi, "Measurement and Analysis of the Dimensionless Extinction Constant for Diesel and Biodiesel Soot: Influence of Pressure, Wavelength and Fuel-type", Ph.D. thesis, Drexel University (2009).
  15. A. C. Ferrari and J. Robertson, "Raman Spectroscopy of Amorphous, Nanostructured, Diamond-like Carbon, and Nanodiamond", Phil. Trans. R. Soc. Lon. A., Vol. 362, pp. 2477-2512 (2004). https://doi.org/10.1098/rsta.2004.1452