과제정보
연구 과제 주관 기관 : Korea Institute of Energy Technology Evaluation and Planning (KETEP)
참고문헌
- Akyildiz, A. (2012), "A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank", J. Sound Vib., 331(1), 41-52. https://doi.org/10.1016/j.jsv.2011.08.002
- Amabili, M., Paidousis, M.P. and Lakis, A.A. (1998), "Vibrations of partially filled cylindrical tanks with ring-stiffners and flexible bottom", J. Sound Vib., 213(5), 259-299. https://doi.org/10.1006/jsvi.1997.1481
- Banerji, P. and Samanta, A. (2011), "Earthquake vibration control of structures using hybrid mass liquid damper", Eng. Struct., 33(4), 1291-1301. https://doi.org/10.1016/j.engstruct.2011.01.006
- Baur, H.F. (1996), "Nonlinear mechanical model for the description of propellant sloshing", AIAA J., 4(9), 1662-1668. https://doi.org/10.2514/3.3752
- Bhargava, K., Ghosh, A.K. and Ramanujam, S. (2005), "Seismic response and failure modes for a water storage structure-A case study", Struct. Eng. Mech., 20(1), 1-20. https://doi.org/10.12989/sem.2005.20.1.001
- Chakraborty, S., Debbarma, R. and Marano, G.C. (2012), "Performance of tuned liquid column dampers considering maximum liquid motion in seismic vibration control of structures", J. Sound Vib., 331(7), 1519-1531. https://doi.org/10.1016/j.jsv.2011.11.029
- Cho, J.R., Song, J.M. and Lee, J.K. (2001), "Finite element techniques for the free-vibration and seismic analysis of liquid-storage tanks", Finite Elem. Anal. Des., 37, 467-483. https://doi.org/10.1016/S0168-874X(00)00048-2
- Cho, J.R. and Song, J.M. (2001), "Assessment of classical numerical models for the separate fluid-structure modal analysis", J. Sound Vib., 239(5), 995-1012. https://doi.org/10.1006/jsvi.2000.3179
- Cho, J.R., Kim, K.W., Lee, J.K., Park, T.H. and Lee, W.Y. (2002), "Axisymmetric modal analysis of liquid-storage tanks considering compressibility effects", Int. J. Numer. Meth. Eng., 55, 733-752. https://doi.org/10.1002/nme.530
- Cho, J.R., Lee, H.W. and Kim, K.W. (2002), "Free vibration analysis of baffled liquid-storage tanks by the structural-acoustic finite element formulation", J. Sound Vib., 258(5), 847-866 https://doi.org/10.1006/jsvi.2002.5185
- Cho, J.R. and Lee, S.Y. (2003), "Dynamic analysis of baffled fuel-storage tanks using the ALE finite element method", Int. J. Numer. Meth. Fluid., 41, 185-208. https://doi.org/10.1002/fld.434
- Cho, J.R. and Lee, H.W. (2004), "Numerical study on liquid sloshing in baffled tank by nonlinear finite element method", Comput. Meth. Appl. Mech. Eng., 193, 2581-2598. https://doi.org/10.1016/j.cma.2004.01.009
- Cho, J.R., Lee, H.W. and Ha, S.Y. (2005), "Finite element analysis of resonant sloshing response in 2-D baffled tank", J. Sound Vib., 288, 829-845. https://doi.org/10.1016/j.jsv.2005.01.019
- Colwell, S. and Basu, B. (2009), "Tuned liquid column dampers in offshore wind turbines for structural control", Eng. Struct., 31, 358-368. https://doi.org/10.1016/j.engstruct.2008.09.001
- Dean, R.G. and Dalrymple, D. (1984), Water Wave Mechanics for Engineers and Scientists, 1st Edition, Prentice-Hall, New Jersey.
- Greenberg, M.D. (1987), Foundations of Applied Mathematics, Prentice-Hall, New Jersey.
- Ibrahim, R.A. (2005), Liquid Sloshing Dynamics, Theory and Applications, Cambridge University Press, New York.
- Jia, D., Agrawal, M., Wang, C., Shen, J. and Malachowski, J. (2015), "Fluid-structure interaction of liquid sloshing induced by vessel motion in floating LNG tank", ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2015-41463.
- Kim, H.J. and Adeli, A. (2005), "Hybrid control of irregular steel highrise building structures under seismic excitations", Int. J. Numer. Meth. Eng., 63(12), 1757-1774. https://doi.org/10.1002/nme.1336
- Koh, C.G., Luo, M., Gao, M. and Bai, W. (2013), "Modeling of liquid sloshing with constrained floating baffle", Comput. Struct., 122, 270-279. https://doi.org/10.1016/j.compstruc.2013.03.018
- Lee, H.H., Wong, S.H. and Lee, S.H. (2006), "Response mitigation on the offshore floating platform system with tuned liquid column damper", Ocean Eng., 33, 1118-1142. https://doi.org/10.1016/j.oceaneng.2005.06.008
- Love, J.S. and Tait, M.J. (2012), "A preliminary design for tuned liquid dampers conforming to space restrictions", Eng. Struct., 40, 187-197. https://doi.org/10.1016/j.engstruct.2012.02.036
- Lukovsky, I., Ovchynnykov, D. and Timokha, A. (2012), "Asymptotic nonlinear multimodal modeling of liquid sloshing in an upright circular cylindrical tank. I. Modal equations", Nonlin. Oscillat., 14(4), 512-525. https://doi.org/10.1007/s11072-012-0173-5
- Morsy, H. (2010), "A numerical study of the performance of tuned liquid dampers", MD Thesis, MaMaster University, Hamilton, Canada.
- Moslemi, M., Kianoush, M.R. and Pogorzelski, W. (2011), "Seismic response of liquid-filled elevated tanks", Eng. Struct., 33(6), 2074-2084. https://doi.org/10.1016/j.engstruct.2011.02.048
- Tait, M.J., Isyumov, N. and El Damatty, A.A. (2004), "The efficiency and robustness of a uni-directional tuned liquid damper and modeling with an equivalent TMD", Wind Struct., 7(4), 235-250. https://doi.org/10.12989/was.2004.7.4.235
- Tedesco, J.W., Kostem, C.N. and Kalnins, A. (1987), "Free vibration of cylindrical liquid storage tanks", Comput. Struct., 26(6), 957-964. https://doi.org/10.1016/0045-7949(87)90113-1
- Veletsos, A.S. and Yang, J.Y. (1976), "Dynamics of fixed-based liquid-storage tanks", Proceedings of US-Japan Seminar Earthquake Engineering Research, 317-341.
- Xue, M.A. and Lin, P. (2011), "Numerical study of ring baffle effects on reducing violent liquid sloshing", Comput. Fluid., 52, 116-129. https://doi.org/10.1016/j.compfluid.2011.09.006
- Yamamoto, K. and Kawahara, M. (1999), "Structural oscillation control using tuned liquid damper", Comput. Struct., 71, 435-446. https://doi.org/10.1016/S0045-7949(98)00240-5