References
- Aristizabal-Ochoa, J.D. (1997), "Story stability of braced, partially braced and unbraced frames; classical approach", J. Struct. Eng., ASCE, 123(6), 799-807. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:6(799)
- Aristizabal-Ochoa, J.D. (2002), "Classic buckling of three-dimensional multi-column systems under gravity loads", J. Struct. Eng., ASCE, 128(6), 613-624.
- Aristizabal-Ochoa, J.D. (2003), "Elastic stability and second-order analysis of three dimensional frames: effects of column orientation", J. Struct. Eng., ASCE, 129(11), 1254-1267.
- Bozdogan, K.B. and Ozturk, D. (2010), "An approximate method for lateral stability analysis of wall-frame buildings including shear deformations of walls", Sadhana, 35(3), 241-253. https://doi.org/10.1007/s12046-010-0008-y
- Chai, Y.H. and Chen, Yanfei. (2009), "Reexamination of the vibrational period of coupled shear walls by differential transformation", J. Struct. Eng., ASCE, 135(11), 1330-1339 https://doi.org/10.1061/(ASCE)ST.1943-541X.0000059
- Chen, C. and Liu, Y. (1998), "Solution of two point boundary value problems using the differential transformation method", J. Opt. Theor. Appl., 99(1), 23-35. https://doi.org/10.1023/A:1021791909142
- Colunga, T.C. and Hernandez, G.R. (2015), "Assessment of the lateral stiffness of walls with openings", COMPYDY, Crete island, Greece, May.
- Ellwanger, R.J. (2013), "Floors number influence on the instability parameter of reinforced concrete wall-or core-braced buildings", IBRACON Estrut. Mater., 6(5), 783-810. https://doi.org/10.1590/S1983-41952013000500006
- Gantes, C.J. and Mageirou, G.E. (2005), "Improved stiffness distribution factors for evaluation of effective buckling lengths in multi-story sway frames", Eng. Struct., 27(7), 1113-1124. https://doi.org/10.1016/j.engstruct.2005.02.009
- Gengshu, T., Pi, Y.L., Bradford, M.A. and Tin-Loi, F. (2008), "Buckling and second order effects in dual shear-flexural Systems", J. Struct. Eng., ASCE, 134(11), 1726-1732. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:11(1726)
- Gengshu, T. and Yun, W. (2008), "A simplified method for the buckling of outrigger-shear wall braced Structures", Adv. Struct. Eng., 11(1), 1-15. https://doi.org/10.1260/136943308784069478
- Girgin, K., Ozmen, G. and Orakdogen, E. (2006), "Buckling lengths of irregular frame columns", J. Const. Steel Res., 62, 605-613. https://doi.org/10.1016/j.jcsr.2005.09.006
- Girgin, K. and Ozmen, G. (2007), "Simplified procedure for determining buckling loads of threedimensional framed structures", Eng. Struct., 29(9), 2344-2352. https://doi.org/10.1016/j.engstruct.2006.11.026
- Gomes, F.C., e Costa, P.M.P., Rodrigues, J.P.C. and Neves, I.C. (2007), "Buckling length of a steel column for fire design", Eng. Struct., 29(10), 2497-2502. https://doi.org/10.1016/j.engstruct.2006.11.015
- Gustafsson, D. and Hehir J. (2005), "Stability of tall buildings", MSc. Dissertation, Chalmers University of Technolog, Goteborg.
- Hoenderkamp, J.C.D. (2002), "Critical loads of lateral load resisting structures for tall buildings", Struct. Des. Tall Build., 11(3), 221-232. https://doi.org/10.1002/tal.196
- Kaveh, A. and Salimbahrami, B. (2006), "Buckling load of symmetric plane frames using canonical forms", Comput. Struct., 85, 1420-1430.
- Kaveh, A. (2013), Optimal Analysis of Structures by Concepts of Symmetry and Regularity, Springer Verlag, GmbH, Wien-NewYork.
- Keskin, Y., Kurnaz, A., Kiris, M. and Oturanc, G. (2007), "Approximate solutions of generalized pantograph equations by the differential transform method", Int. J. Nonlin. Sci., 8, 159-164.
- Kollar, L. (2008), "Second order effects on building structures-an approximate evaluation", 17th Congress of IABSE, Chicago, September.
- Lal, R. and Ahlawat, N. (2015), "Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method", Eur. J. Mech. A Solid., 52, 85-94. https://doi.org/10.1016/j.euromechsol.2015.02.004
- Li. Q.S. (2001), "Stability of tall buildings with shear wall structures", Eng. Struct., 23, 1177-1185. https://doi.org/10.1016/S0141-0296(00)00122-X
- Liu, Z., Yin, Y., Wang, F., Zhao, Y. and Cai, L. (2013), "Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam", Struct. Eng. Mech., 48(5), 697-709. https://doi.org/10.12989/sem.2013.48.5.697
- Mageirou, G.E. and Gantes, C.J. (2006), "Buckling strength of multi-story sway, non-sway and partially sway frames with semi rigid connections", J. Const. Steel Res., 62, 893-905. https://doi.org/10.1016/j.jcsr.2005.11.019
- Nadjai, A. and Johnson, D. (1998), "Elastic and elasto-plastic analysis of planar coupled shear walls with flexible bases", Comput. Struct., 68, 213-229. https://doi.org/10.1016/S0045-7949(98)00036-4
- Orumu, S.T. (2013), "Approximate elastic model for determination of critical loads and effective lengths for simple sway frames", IJES, 2(8), 113-120.
- Ozgumus, O.O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of double tapered rotating Euler-Bernoulli beam by using the differential transform method", Meccanica, 41(6), 661-670. https://doi.org/10.1007/s11012-006-9012-z
- Ozmen, G. and Girgin, K. (2005), "Buckling lengths of unbraced multi-storey frame columns", Struct. Eng. Mech., 19(1), 55-71. https://doi.org/10.12989/sem.2005.19.1.055
- Potzta, G. and Kollar, L.P. (2003), "Analysis of building structures by replacement sandwich beams", Int. J. Solid. Struct., 40, 535-553. https://doi.org/10.1016/S0020-7683(02)00622-4
- Pukhov, G.E. (1981), "Expanison formulas for differential transforms", Cybern. Syst. Anal., 17(4), 460-464.
- Rajasekaran, S. (2009), Structural Dynamics of Earthquake Engineering: Theory and Application using Mathematica and Matlab, Woodhead Publishing in Materials, CRC Press India.
- Rajasekaran, S. (2008), "Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods", Struct. Eng. Mech., 28(2), 221-238. https://doi.org/10.12989/sem.2008.28.2.221
- Rosman, R. (1974), "Stability and dynamics of shear-wall frame structures", Build. Sci., 9, 55-63. https://doi.org/10.1016/0007-3628(74)90040-1
- Rosman, R. (1981), "Buckling and vibrations of spatial building structures", Eng. Struct., 3, 194-202. https://doi.org/10.1016/0141-0296(81)90001-8
- Rutenberg, A., Levithian, I. and Decalo, M. (1988), "Stability of shear-wall structures", J. Struct. Eng., ASCE, 114(3), 707-716. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:3(707)
- Syngellakis, S. and Kameshki, E.S. (1994), "Elastic critical loads for plane frames by transfer matrix method" J. Struct. Eng., ASCE, 120(4), 1140-1157. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:4(1140)
- Tong, G.S. and Ji, Y. (2007), "Buckling of frames braced by flexural bracing", J. Const. Steel Res., 63, 229-236. https://doi.org/10.1016/j.jcsr.2006.04.002
- Wang, C.M., Ang, K.K. and Quek, S.T. (1991), "Stability formulae for shear-wall frame structures", Build. Env., 26(2), 217-222. https://doi.org/10.1016/0360-1323(91)90029-B
- Wang, S.K. (1997), "Stiffness, stability and fundamental period of coupled shear walls of variable thickness", Proc. Instn Civ. Eng. Struct. Build., 122(3), 334-338. https://doi.org/10.1680/istbu.1997.29804
- Wood, R.H. (1974a), "Effective lengths of columns in multi-story buildings. part 1 Effective lengths of Single columns and allowances for continuity", Struct. Eng., 52(7), 235-244.
- Wood, RH. (1974b), "Effective lengths of columns in multi-story buildings. part 2 effective lengths of multiple columns in tall buildings with sidesway", Struct. Eng., 52(7), 295-302.
- Wood, R.H. (1974c), "Effective lengths of columns in multi-story buildings.part 3 features which increase the stiffness of tall frames against sway collapse, and recommendations for designers", Struct. Eng., 52(7), 341-346.
- Xenidis, H. and Makarios, T. (2004), "Critical buckling load of multi-story r/c buildings", 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
- Xu, L. and Wang, X.H. (2007), "Stability of multi-storey unbraced steel frames subjected to variable loading", J. Const. Steel Res., 63(10), 1506-1514. https://doi.org/10.1016/j.jcsr.2007.01.010
- Zalka, K.A. (1999), "Full-height buckling of frameworks with cross-bracing", Proc. Instn. Civ. Eng. Struct. Build., 134(2), 181-191. https://doi.org/10.1680/istbu.1999.31384
- Zalka, K.A. (2000), Global Structural Analysis of Buildings, Taylor & Francis Group, Boca Raton, FL, USA.
- Zalka, K.A. (2002a), "Global stability analysis and structural performance of buildings braced by infilled frames", Proc. Instn. Civ. Eng. Struct. Build., 152(3), 213-224. https://doi.org/10.1680/stbu.2002.152.3.213
- Zalka, K.A. (2002b), "Buckling analysis of buildings braced by frameworks, shear walls and cores", Struct. Des. Tall Build., 11(3), 197-219. https://doi.org/10.1002/tal.194
- Zalka, K.A. (2003), "A hand method for predicting the stability of regular buildings, using frequency measurements", Struct. Des. Tall Build., 12(4), 273-281. https://doi.org/10.1002/tal.221
- Zalka, K.A. (2013), Structural analysis of regular multi-storey buildings, Taylor & Francis Group, Boca Raton, FL, USA.
- Zhang, L., Tong, G.S. and Ji, Y. (2015), "Buckling of flexural-shear bracing system and its braced steel frames", Adv. Struct. Eng., 18(11), 1831-1844. https://doi.org/10.1260/1369-4332.18.11.1831
Cited by
- Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline vol.62, pp.1, 2016, https://doi.org/10.12989/sem.2017.62.1.065
- Multi-Beams modelling for high-rise buildings subjected to static horizontal loads vol.75, pp.3, 2020, https://doi.org/10.12989/sem.2020.75.3.283