DOI QR코드

DOI QR Code

Apigenin Regulates Interleukin-1β-Induced Production of Matrix Metalloproteinase Both in the Knee Joint of Rat and in Primary Cultured Articular Chondrocytes

  • Park, Jin Sung (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Kim, Dong Kyu (Department of Orthopedic Surgery, School of Medicine, Chungnam National University) ;
  • Shin, Hyun-Dae (Department of Orthopedic Surgery, School of Medicine, Chungnam National University) ;
  • Lee, Hyun Jae (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Jo, Ho Seung (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Jeong, Jin Hoon (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Choi, Young Lac (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University) ;
  • Lee, Choong Jae (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Hwang, Sun-Chul (Department of Orthopedic Surgery and Institute of Health Sciences, School of Medicine and Hospital, Gyeongsang National University)
  • Received : 2015.12.30
  • Accepted : 2016.01.22
  • Published : 2016.03.01

Abstract

We examined whether apigenin affects the gene expression, secretion and activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the knee joint of rat to evaluate the potential chondroprotective effects of apigenin. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription - polymerase chain reaction (RT-PCR) was used to measure interleukin-$1{\beta}$ (IL-$1{\beta}$)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and ADAMTS-5. In rabbit articular chondrocytes, the effects of apigenin on IL-$1{\beta}$-induced secretion and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of apigenin on MMP-3 protein production was also examined in vivo. In rabbit articular chondrocytes, apigenin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5. Furthermore, apigenin inhibited the secretion and proteolytic activity of MMP-3 in vitro, and inhibited production of MMP-3 protein in vivo. These results suggest that apigenin can regulate the gene expression, secretion, and activity of MMP-3, by directly acting on articular chondrocytes.

Keywords

References

  1. Aida, Y., Maeno, M., Suzuki, N., Shiratsuchi, H., Motohashi, M. and Matsumura, H. (2005) The effect of IL-$1{\beta}$ on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes. Life Sci. 77, 3210-3221. https://doi.org/10.1016/j.lfs.2005.05.052
  2. Aigner, T. and McKenna, L. (2002) Molecular pathology and pathobiology of osteoarthritic cartilage. Cell. Mol. Life Sci. 59, 5-18. https://doi.org/10.1007/s00018-002-8400-3
  3. Birkedal-Hansen, H., Moore, W. G., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A. and Engler, J. A. (1993) Matrix metalloproteinases: a review. Crit. Rev. Oral Biol. Med. 4, 197-250. https://doi.org/10.1177/10454411930040020401
  4. Bonnet, C. S. and Walsh, D. A. (2005) Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 44, 7-16. https://doi.org/10.1093/rheumatology/keh344
  5. Burrage, P. S., Mix, K. S. and Brinckerhoff, C. E. (2006) Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529-543. https://doi.org/10.2741/1817
  6. Dean, D. D., Martel-Pelletier, J., Pelletier, J. P., Howell, D. S. and Woessner, J. F. Jr. (1989) Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J. Clin. Invest. 84, 678-685. https://doi.org/10.1172/JCI114215
  7. Du, H., Hao, J., Liu, F., Lu, J. and Yang, X. (2015) Apigenin attenuates acute myocardial infarction of rats via the inhibitions of matrix metalloprotease- 9 and inflammatory reactions. Int. J. Clin. Exp. Med. 8, 8854-8859.
  8. Durigova, M., Roughley. P. J. and Mort, J. S. (2008) Mechanism of proteoglycan aggregate degradation in cartilage stimulated with oncostatin M. Osteoarthr. Cartil. 16, 98-104. https://doi.org/10.1016/j.joca.2007.05.002
  9. Echtermeyer, F., Bertrand, J., Dreier, R., Meinecke, I., Neugebauer, K., Fuerst, M., Lee, Y. J., Song, Y. W., Herzog, C., Theilmeier, G. and Pap, T. (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 15, 1072-1076. https://doi.org/10.1038/nm.1998
  10. Freemont, A. J., Hampson, V., Tilman, R., Goupille, P., Taiwo, Y. and Hoyland, J. A. (1997) Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific. Ann. Rheum. Dis. 56, 542-549. https://doi.org/10.1136/ard.56.9.542
  11. Garnero, P., Rousseau, J. C. and Delmas. P. D. (2000) Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthritis Rheum. 43, 953-968. https://doi.org/10.1002/1529-0131(200005)43:5<953::AID-ANR1>3.0.CO;2-Q
  12. Goldring, M. B., Otero, M., Tsuchimochi, K., Ijiri, K. and Li, Y. (2008) Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann. Rheum. Dis. 67, iii75-iii82.
  13. Goupille, P., Jayson, M. I., Valat, J. P. and Freemont, A. J. (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration. Spine 23, 1612-1626. https://doi.org/10.1097/00007632-199807150-00021
  14. Hwang, Y. P., Oh, K. N., Yun, H. J. and Jeong. H. G. (2011) The flavonoids apigenin and luteolin suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and AP-1-dependent signaling in HaCaT cells. J. Dermatol. Sci. 61, 23-31. https://doi.org/10.1016/j.jdermsci.2010.10.016
  15. Jo, H., Park, J. S., Kim, E. M., Jung, M. Y., Lee, S. H., Seong, S. C., Park, S. C., Kim, H. J. and Lee, M. C. (2003) The in vitro effects of dehydroepiandrosterone on human osteoarthritic chondrocytes. Osteoarthr. Cartil. 11, 585-594. https://doi.org/10.1016/S1063-4584(03)00094-3
  16. Kanyama, M., Kuboki, T., Kojima, S., Fujisawa, T., Hattori, T., Takigawa, M. and Yamashita, A. (2000) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids of patients with temporomandibular joint osteoarthritis. J. Orofac. Pain 14, 20-30.
  17. Kobayashi, M., Squires, G. R., Mousa, A., Tanzer, M., Zukor, D. J., Antoniou, J., Feige, U. and Poole, A. R. (2005) Role of interleukin-1 and tumor necrosis factor ${\alpha}$ in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 52, 128-135. https://doi.org/10.1002/art.20776
  18. Kullich, W., Fagerer, N. and Schwann, H. (2007) Effect of the NSAID nimesulide on the radical scavenger glutathione S-transferase in patients with osteoarthritis of the knee. Curr. Med. Res. Opin. 23, 1981-1986. https://doi.org/10.1185/030079907X223486
  19. Lijnen, H. R. (2002) Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry Mosc. 67, 92-98. https://doi.org/10.1023/A:1013908332232
  20. Lin, P. M., Chen, C. T. and Torzilli, P. A. (2004) Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthr. Cartil. 12, 485-496. https://doi.org/10.1016/j.joca.2004.02.012
  21. Little, C. B., Barai, A., Burkhardt, D., Smith, S. M., Fosang, A. J., Werb, Z., Shah, M. and Thompson, E. W. (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60, 3723-3733. https://doi.org/10.1002/art.25002
  22. Loeser, R. F. (2006) Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators and aging collide. Arthritis Rheum. 54, 1357-1360. https://doi.org/10.1002/art.21813
  23. Mankin, H. J. (1982) The response for articular cartilage to mechanical injury. J. Bone Joint Surg. Am. 64, 460-466. https://doi.org/10.2106/00004623-198264030-00022
  24. Moon, P. D., Jeong, H. S., Chun, C. S. and Kim, H. M. (2011) Baekjeolyusin-tang and its active component berberine block the release of collagen and proteoglycan from IL-$1\beta$-stimulated rabbit cartilage and down-regulate matrix metalloproteinases in rabbit chondrocytes. Phytother. Res. 25, 844-850. https://doi.org/10.1002/ptr.3353
  25. Neuhold, L. A., Killar, L., Zhao, W., Sung, M. L., Warner, L., Kulik, J., Turner, J., Wu, W., Billinghurst, C., Meijers, T., Poole, A. R., Babij, P. and DeGennaro, L. J. (2001) Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest. 107, 35-44. https://doi.org/10.1172/JCI10564
  26. Palmieri, D., Perego, P. and Palombo, D. (2012) Apigenin inhibits the TNF-${\alpha}$-induced expression of eNOS and MMP-9 via modulating Akt signalling through oestrogen receptor engagement. Mol. Cell. Biochem. 371, 129-136. https://doi.org/10.1007/s11010-012-1429-1
  27. Pantsulaia, I., Kalichman, L. and Kobyliansky, E. (2010) Association between radiographic hand osteoarthritis and RANKL, OPG and inflammatory markers. Osteoarthr. Cartil. 18, 1448-1453. https://doi.org/10.1016/j.joca.2010.06.009
  28. Patil, R. H., Babu, R. L., Naveen Kumar, M., Kiran Kumar, K. M., Hegde, S. M., Ramesh, G. T. and Chidananda Sharma, S. (2015) Apigenin inhibits PMA-induced expression of pro-inflammatory cytokines and AP-1 factors in A549 cells. Mol. Cell. Biochem. 403, 95-106. https://doi.org/10.1007/s11010-015-2340-3
  29. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. and Boyd, M. R. (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107-1112. https://doi.org/10.1093/jnci/82.13.1107
  30. Stanton, H., Rogerson, F. M., East, C. J., Golub, S. B., Lawlor, K. E., Meeker, C. T., Little, C. B., Last, K., Farmer, P. J., Campbell, I. K., Fourie, A. M. and Fosang, A. J. (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434, 648-652. https://doi.org/10.1038/nature03417
  31. Yoshihara, Y., Nakamura, H., Obata, K., Yamada, H., Hayakawa, T., Fujikawa, K. and Okada, Y. (2000) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis. 59, 455-461. https://doi.org/10.1136/ard.59.6.455

Cited by

  1. Mistletoe fig (Ficus deltoidea Jack) leaf extract prevented postmenopausal osteoarthritis by attenuating inflammation and cartilage degradation in rat model vol.24, pp.9, 2017, https://doi.org/10.1097/GME.0000000000000882
  2. Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model vol.50, pp.4, 2017, https://doi.org/10.1590/1414-431x20165714
  3. Apigenin: A current review on its beneficial biological activities vol.41, pp.4, 2017, https://doi.org/10.1111/jfbc.12376
  4. Betulin suppressed interleukin-1β-induced gene expression, secretion and proteolytic activity of matrix metalloproteinase in cultured articular chondrocytes and production of matrix metalloproteinase in the knee joint of rat vol.21, pp.1, 2017, https://doi.org/10.4196/kjpp.2017.21.1.19
  5. Effect of oleanolic acid on the activity, secretion and gene expression of matrix metalloproteinase-3 in articular chondrocytesin vitroand the production of matrix metalloproteinase-3in vivo vol.21, pp.2, 2017, https://doi.org/10.4196/kjpp.2017.21.2.197
  6. Identifying chondroprotective diet-derived bioactives and investigating their synergism vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-35455-8
  7. The significant impact of apigenin on different aspects of autoimmune disease pp.1568-5608, 2018, https://doi.org/10.1007/s10787-018-0531-8
  8. Inhibition of the Expression of Matrix Metalloproteinases in Articular Chondrocytes by Resveratrol through Affecting Nuclear Factor-Kappa B Signaling Pathway vol.26, pp.6, 2016, https://doi.org/10.4062/biomolther.2018.132
  9. Natural Products as Sources of Novel Drug Candidates for the Pharmacological Management of Osteoarthritis: A Narrative Review vol.27, pp.6, 2016, https://doi.org/10.4062/biomolther.2019.139
  10. Molecular Targets of Natural Products for Chondroprotection in Destructive Joint Diseases vol.21, pp.14, 2016, https://doi.org/10.3390/ijms21144931
  11. Genetics in Cartilage Lesions: Basic Science and Therapy Approaches vol.21, pp.15, 2016, https://doi.org/10.3390/ijms21155430
  12. Anti-arthritic activity of D-carvone against complete Freund's adjuvant-induced arthritis in rats through modulation of inflammatory cytokines vol.24, pp.6, 2016, https://doi.org/10.4196/kjpp.2020.24.6.453
  13. Aging, Cell Senescence, the Pathogenesis and Targeted Therapies of Osteoarthritis vol.12, pp.None, 2016, https://doi.org/10.3389/fphar.2021.728100
  14. Emerging Natural-Product-Based Treatments for the Management of Osteoarthritis vol.10, pp.2, 2016, https://doi.org/10.3390/antiox10020265
  15. Therapeutic Single Compounds for Osteoarthritis Treatment vol.14, pp.2, 2016, https://doi.org/10.3390/ph14020131
  16. Formulation and Optimization of Nano Lipid Based Oral Delivery Systems for Arthritis vol.11, pp.5, 2021, https://doi.org/10.3390/coatings11050548
  17. Anti-arthritic and cartilage damage prevention via regulation of Nrf2/HO-1 signaling by glabridin on osteoarthritis vol.14, pp.7, 2016, https://doi.org/10.1016/j.arabjc.2021.103207