DOI QR코드

DOI QR Code

Synthesis and Characterization of Insensitive Energetic Plasticizer

둔감 에너지 가소제 합성 및 특성 분석

  • Lee, Woonghee (Energetic Materials & Pyrotechnics Department, Hanwha Corporation Defence R&D Center) ;
  • Kim, Minjun (Energetic Materials & Pyrotechnics Department, Hanwha Corporation Defence R&D Center) ;
  • Park, Youngchul (Agency for Defense Development) ;
  • Lee, Bumjae (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2016.06.10
  • Accepted : 2016.10.22
  • Published : 2016.12.01

Abstract

BTTN and TMETN are representative energetic plasticizers used for various propellants. However these compounds are sensitive relatively. So, in order to develop insensitive energetic plasticizer, this study attempted to synthesize derivative of triazole, 4,5-bis(azidomethyl)-(2-methoxyethyl)-1,2,3- triazole (DAMETR). Also, the prepared compound was characterized by NMR, IR spectroscopy, and physicochemical properties such as glass transition temperature, melting point, decomposition temperature, density, viscosity and impact sensitivity. In addition, the heats of formation (${\Delta}H_f$) and detonation properties (pressure and velocity) of DAMETR were calculated using Gaussian 09 and EXPLO5 programs. Especially, 1-DAMETR(>50 J) was more insensitive than BTTN(1 J) and TMETN(9.2 J).

BTTN, TMETN은 고체 추진제에서 사용되는 대표적인 에너지 가소제이다. 그러나 이 물질들은 충격 감도가 비교적 민감하다는 단점이 있다. 본 연구에서는 BTTN, TMETN 보다 둔감한 에너지 가소제를 개발하기 위해 트리아졸 계열의 4,5-bis(azidomethyl)-(2-methoxyethyl)-1,2,3-triazole(DAMETR)을 합성하고 이화학적 특성 분석을 하였다. 또한, 분광분석(NMR, IR)을 통해 DAMETR의 구조를 분석하였고, 유리전이온도, 녹는점, 분해온도, 밀도, 점도, 충격감도 등의 물리적 특성을 측정하였다. 그리고 Gaussian 09와 EXPLO5를 이용하여 생성열과 폭발 특성(폭압, 폭속) 등을 계산하였다. 특히 1-DAMETR(>50 J)의 충격감도는 BTTN(1 J), TMETN(9.2 J)에 비해 매우 둔감하였다.

Keywords

References

  1. Kubota N., Propellants and Explosives, Thermochemical Aspects of Combustion, 2nd ed., Wiley-VCH, New York, N.Y., U.S.A., 2007.
  2. Agrawal J.P., High Energy Materials, 1th ed., Wiley-VCH, New York, N.Y., U.S.A., 2010.
  3. Boschan R., Merrow R.T. and Dolah R.W., "The Chemistry of Nitrate Esters," Chemical Reviews, Vol. 55, No. 3, pp. 485-510, 1955. https://doi.org/10.1021/cr50003a001
  4. Agrawal J.P., Surve R.N. and Sonawane S.H., "Some Aromatic Nitrate Esters: Synthesis, Structural Aspects, Thermal and Explosive Properties," Journal of Hazardous Materials, Vol. 77, No. 1, pp. 11-31, 2000. https://doi.org/10.1016/S0304-3894(00)00235-1
  5. Wingborg N. and Eldster C., "2,2-Dinitro-1,3-Bis-Nitrooxy-Propane(NPN): A New Energetic Plasticizer," Propellants, Explosives, Pyrotechnics, Vol. 27, No. 6, pp. 314-319, 2002. https://doi.org/10.1002/prep.200290000
  6. Ye C., Gao H., Boatz J.A., Drake G.W., Twamley B. and Shreeve J.M., "Polyazido pyrimidines: High-Energy Compounds and Precursors to Carbon Nanotubes," Angewandte Chemie International Edition, Vol. 45, No 43, pp. 7262-7265, 2006. https://doi.org/10.1002/anie.200602778
  7. Kumari D., Yamajala K.D.B., Asthana S.N., Raju K. and Banerjee S., "Application of Azido Esters as Energetic Plasticizers for LOVA Propellant Formulations," Propellants, Explosives, Pyrotechnics, Vol. 38, No. 6, pp. 805-809, 2013. https://doi.org/10.1002/prep.201300070
  8. Huisgen R., "1,3-Dipolare Cycloadditionen Ruckschau und Ausblick," Angewandte Chemie, Vol. 75, No. 13, pp. 604-637, 1963. https://doi.org/10.1002/ange.19630751304
  9. Hartmuth C.K., Finn M.G. and Sharpless K.B., "Click Chemistry: Diverse Chemical Function form a few Good Reactions," Angewandte Chemie International Edition, Vol. 40, No. 11, pp. 2004-2021, 2001. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  10. Vsevolod V.R., Luke G.G., Valery V.F. and Sharpless K.B., "A Stepwise Huisgen Cycloaddition Process: Copper (I)-Catalyzed Regio selective Ligation of Azides and Terminal Alkynes," Angewandte Chemie International Edition, Vol. 41, No. 14, pp. 2596-2599, 2002. https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
  11. Jon C.L. and Sharpless K.B., "The Banert Cascade: A Synthetic Sequence to Polyfunctional NH-1,2,3-Triazoles," Synthesis, No. 9, pp. 1514-1520, 2005.
  12. Parr, R.G. and Yang, W., Density Functional Theory of Atoms and Molecules, 1th ed., Oxford University Press, New York, N.Y., U.S.A., 1989.