DOI QR코드

DOI QR Code

Real-time Micro-algae Flocculation Analysis Method Based on Lens-free Shadow Imaging Technique (LSIT)

렌즈프리 그림자 이미징 기술을 이용한 실시간 미세조류 응집현상 분석법

  • Seo, Dongmin (Department of Electronics and Information Engineering, Korea University) ;
  • Oh, Sangwoo (Department of Electronics and Information Engineering, Korea University) ;
  • Dong, Dandan (Department of Environmental Engineering, Korea University) ;
  • Lee, Jae Woo (Department of Environmental Engineering, Korea University) ;
  • Seo, Sungkyu (Department of Electronics and Information Engineering, Korea University)
  • Received : 2016.11.15
  • Accepted : 2016.11.21
  • Published : 2016.11.25

Abstract

Micro-algae, one of the biological resources for alternative energy, has been heavily studied. Among various methods to analyze the status of the micro-algae including counting, screening, and flocculation, the flocculation approach has been widely accepted in many critical applications such as red tide removal study or microalgae resource study. To characterize the flocculation status of the micro-alga. A traditional optical modality, i.e., photospectrometry, measuring the optical density of the flocs has been frequently employed. While this traditional optical method needs shorter time than the counting method in flocculation status analysis, it has relatively lower detection accuracy. To address this issue, a novel real-time micro-algae flocculation analysis method based on the lens-free shadow imaging technique (LSIT) is introduced. Both single cell detection and floc detection are simultaneously available with a proposed lens-free shadow image, confirmed by comparing the results with optical microscope images. And three shadow parameters, e.g., number of flocs, effective area of flocs, and maximum size of floc, enabling quantification of the flocculation phenomenon of micro-alga, are firstly demonstrated in this article. The efficacy of each shadow parameter is verified with the real-time flocculation monitoring experiments using custom developed cohesive agents.

미세조류는 대체에너지를 위한 생물자원 중 하나로 다양한 분야에서 관련된 연구가 활발히 진행되고 있다. 미세조류의 상태를 분석하기 위한 방법으로는 계수법, 스크리닝법, 응집법 등이 사용되고 있는데, 이 중 응집법은 적조 제거제 연구, 미세조류 자원화 연구 등에 효과적으로 이용되고 있다. 미세조류의 응집 상태 분석에는 현재 분광광도법이 주로 사용되고 있는데, 이는 미세조류의 응집 상태를 광학밀도 계측을 통해 분석하는 방법으로 미세조류 계수법에 비해 소요되는 분석 시간은 작지만, 측정 결과의 오차가 상대적으로 큰 단점을 갖고 있다. 본 논문에서는 이러한 단점을 개선하기 위해서 렌즈프리 그림자 이미징 기술을 이용하여 미세조류의 응집 현상을 실시간으로 분석하는 방법을 제안한다. 본 연구에서는 렌즈프리 그림자 이미지를 이용하여 단일 미세조류의 측정과 응집 미세조류 측정이 동시에 가능함을 현미경 이미지와의 비교를 통해 입증하였다. 또한, 해당 기술을 기반으로 미세조류의 응집 현상을 정량적으로 분석할 수 있는 세 가지의 그림자 파라미터(플록들의 개수, 플록들의 유효면적 및 최대크기 플록의 면적)를 제안하였다. 각 파라미터의 유효성은 응집 효율이 다른 응집제를 이용한 실험을 통해 시간에 따른 미세조류의 응집상태를 실시간으로 분석하여 입증할 수 있음을 확인하였다.

Keywords

References

  1. Aruoja, V., Dubourguier, H.-C., Kasemets, K. and Kahru, A., 2009, "Toxicity of nanoparticles of CuO, ZnO and $TiO_2$ to microalgae Pseudokirchneriella subcapitata", Sci. Total Environ., Vol. 407, No. 4, 1461-1468. https://doi.org/10.1016/j.scitotenv.2008.10.053
  2. Das, P., Thaher, M. I., Hakim, M. A. Q. M. A., Al-Jabri, H. M. S.J. and Alghasal, G. S. H.S., 2016, "Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media", Bioresour. Technol., Vol. 216, 824-829. https://doi.org/10.1016/j.biortech.2016.06.014
  3. Franklin, N. M., Stauber, J. L. and Lim, R. P., 2001, "Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters", Environ. Toxicol. Chem., Vol. 20, No. 1, 160-170. https://doi.org/10.1002/etc.5620200118
  4. Holm, E. R., Stamper, D. M., Brizzolara, R. A., Barnes, L., Deamer, N. and Burkholder, J. M., 2008, "Sonication of bacteria, phytoplankton and zooplankton: application to treatment of ballast water", Mar. Pollut. Bull., Vol. 56, No. 6, 1201-1208. https://doi.org/10.1016/j.marpolbul.2008.02.007
  5. Jakob, G., Stephens, E., Feller, R., Oey, M., Hankamer, B. and Ross, I. L., 2016, "Triggered exocytosis of the protozoan tetrahymena as a source of bioflocculation and a controllable dewatering method for efficient harvest of microalgal cultures", Algal Res., Vol. 13, 148-158. https://doi.org/10.1016/j.algal.2015.11.011
  6. Jin, G., Yoo, I.-H., Pack, S. P., Yang, J.-W., Ha, U.-H., Paek, S.-H. and Seo, S., 2012, "Lens-free shadow image based high-throughput continuous cell monitoring technique", Biosens. Bioelectron., Vol. 38, No. 1, 126-131. https://doi.org/10.1016/j.bios.2012.05.022
  7. Johnk, K. D., Huisman, J., Sharples, J., Sommeijer, B., Visser, P. M. and Stroom, J. M., 2008, "Summer heatwaves promote blooms of harmful cyanobacteria", Glob. Change Biol., Vol. 14, No. 3, 495-512. https://doi.org/10.1111/j.1365-2486.2007.01510.x
  8. Kim, D.-S., Choi, J.-H., Nam, M.-H., Yang, J.-W., Pak, J. J. and Seo, S., 2011, "LED and CMOS image sensor based hemoglobin concentration measurement technique", Sens. Actuators, B, Vol. 157, 103-109. https://doi.org/10.1016/j.snb.2011.03.032
  9. Kwak, Y. H., Lee, J., Lee, J., Kwak, S. H., Oh, S., Paek, S.-H., Ha, U.-H. and Seo, S., 2014, "A simple and low-cost biofilm quantification method using LED and CMOS image sensor", J. Microbiol. Methods, Vol. 107, 150-156. https://doi.org/10.1016/j.mimet.2014.10.004
  10. Lee, E. J., Ahn, K.-Y., Lee, J.-H., Park, J.-S., Song, J.-A., Sim, S. J., Lee, E. B., Cha, Y. J. and Lee, J., 2012, "A novel bioassay platform using ferritin-based nanoprobe hydrogel", Adv. Mater., Vol. 24, No. 35, 4739-4744. https://doi.org/10.1002/adma.201200728
  11. Lee, J., Kwak, Y. H., Paek, S.-H., Han, S. and Seo, S., 2014, "CMOS image sensor-based ELISA detector using lens-free shadow imaging platform", Sens. Actuators, B, Vol. 196, 511-517. https://doi.org/10.1016/j.snb.2014.02.059
  12. Lee, Y.-C., Jin, E.S., Jung, S. W., Kim, Y.-M., Chang, K. S., Yang, J.-W., Kim, S.-W., Kim, Y.-O. and Shin, H.-J., 2013, "Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides", Sci. Rep., Vol. 3, No. 1292, 1-8.
  13. Li, M., Zhu, W. and Gao, L., 2014, "Analysis of cell concentration, volume concentration, and colony size of microcystis via laser particle analyzer", Environ. Manage., Vol. 53, No. 5, 947-958. https://doi.org/10.1007/s00267-014-0252-8
  14. Mata, T. M., Martins, A. A. and Caetano, N. S., 2010, "Microalgae for biodiesel production and other applications: a review", Renewable Sustainable Energy Rev., Vol. 14, No. 1, 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  15. Moreno-Garrido, I., Lubian, L. M. and Soares, A. M. V. M., 2000, "Influence of cellular density on determination of EC50 in microalgal growth inhibition tests", Ecotoxicol. Environ. Saf., Vol. 47, No. 2, 112-116. https://doi.org/10.1006/eesa.2000.1953
  16. Ozcan, A. and Demirci, U., 2007, "Ultra wide-field lens-free monitoring of cells on-chip", Lab Chip, Vol. 8, No. 1, 98-106. https://doi.org/10.1039/B713695A
  17. Patil, P. D., Gude, V. G., Mannarswamy, A., Deng, S., Cooke, P., Munson-McGee, S., Rhodes, I., Lammers, P. and Nirmalakhandan, N., 2011, "Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions", Bioresour. Technol., Vol. 102, No. 1, 118-122. https://doi.org/10.1016/j.biortech.2010.06.031
  18. Promdaen, S., Wattuya, P. and Sanevas, N., 2014, "Automated microalgae image classification", Procedia Comput. Sci., Vol. 29, 1981-1992. https://doi.org/10.1016/j.procs.2014.05.182
  19. Reddy, K. R., 1981, "Diel variations of certain physico-chemical parameters of water in selected aquatic systems", Hydrobiologia, Vol. 85, No. 3, 201-207. https://doi.org/10.1007/BF00017610
  20. Roy, M., Seo, D., Oh, C.-H., Nam, M.-H., Kim, Y. J. and Seo, S., 2015, "Low-cost telemedicine device performing cell and particle size measurement based on lens-free shadow imaging technology", Biosens. Bioelectron., Vol. 67, 715-723. https://doi.org/10.1016/j.bios.2014.10.040
  21. Sengco, M. R. and Anderson, D. M., 2004, "Controlling harmful algal blooms through clay flocculation", J. Eukaryor. Microbiol., Vol. 51, No. 2, 169-172. https://doi.org/10.1111/j.1550-7408.2004.tb00541.x
  22. Seo, S., Su, T.-W., Tseng, D. K., Erlinger, A. and Ozcan, A., 2008, "Lensfree holographic imaging for on-chip cytometry and diagnostics", Lab Chip, Vol. 9, No. 6, 777-787. https://doi.org/10.1039/b813943a
  23. Shin, Y.-H, Barnett, J. Z., Song, E., Gutierrez-Wing, M. T., Rusch, K. A. and Choi, J.-W., 2015, "A portable fluorescent sensor for on-site detection of microalgae", Microelectron. Eng., Vol. 144, 6-11. https://doi.org/10.1016/j.mee.2015.01.005
  24. Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A., 2006, "Commercial applications of microalgae", J. Biosci. Bioeng., Vol. 101, No. 2, 87-96. https://doi.org/10.1263/jbb.101.87
  25. Stumplf, R. P., Tomlinson, M. C., Calkins, J. A., Kirkpatrick, B., Fisher, K., Nierenberg, K., Currier, R. and Wynne, T. T., 2009, "Skill assessment for an operational algal bloom forecast system", J. Marine Syst., Vol. 76, No. 1-2, 151-161. https://doi.org/10.1016/j.jmarsys.2008.05.016
  26. Stybayeva, G., Mudanyali, O., Seo, S., Silangcruz, J., Macal, M., Ramanculov, E., Dandekar, S., Erlinger, A., Ozcan, A. and Revzin, A., 2010, "Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function", Anal. Chem., Vol. 82, No. 9, 3736-3744. https://doi.org/10.1021/ac100142a
  27. Tassinari, B., Conaghan, S., Freeland, B. and Marison, I. W., 2015, "Application of turbidity meters for the quantitative analysis of flocculation in a jar test apparatus", J. Environ. Eng., Vol. 149, No. 9, 04015015-1-04015015-8.
  28. Usov, A. I., Smirnova, G. P. and Klochkova, N. G., 2001, "Polysaccharides of Algae: 55. polysaccharide composition of several brown algae from kamchatka", Russ. J. Bioorg. Chem., Vol. 27, No. 6, 444-448.
  29. Vandamme, D., Pontes, S. C. V., Goiris, K., Foubert, I., Pinoy, L. J. J. and Muylaert, K., 2011, "Evaluation of electro-coagulationflocculation for harvesting marine and freshwater microalgae", Biotechnol. Bioeng., Vol. 108, No. 10, 2320-2329. https://doi.org/10.1002/bit.23199
  30. Wang, B., Li, Y., Wu, N. and Lan, C. Q., 2008, "CO2 bio-mitigation using microalgae", Appl. Microbiol. Biotechnol., Vol. 79, No. 5, 707-718. https://doi.org/10.1007/s00253-008-1518-y
  31. Williams, P. J. I. B. and Laurens, L. M. L., 2010, "Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics", Energy Environ. Sci., Vol. 3, No. 5, 554-590. https://doi.org/10.1039/b924978h
  32. Woelkerling, W. J., Kowal, R. R. and Gough, S. B., 1976, "Sedgwick-rafter cell counts: a procedural analysis", Hydrobiologia, Vol. 48, No. 2, 95-107. https://doi.org/10.1007/BF00040161