DOI QR코드

DOI QR Code

Phase Formation and Thermal Diffusivity of Thermal Barrier Coatings of La2Zr2O7, (La0.5Gd0.5)2Zr2O7, Gd2Zr2O7 Fabricated by Suspension Plasma Spray

서스펜션 플라즈마 용사법으로 제조한 La2Zr2O7, (La0.5Gd0.5)2Zr2O7, Gd2Zr2O7 열차폐코팅의 상형성과 열전도 특성

  • Kim, Sun-Joo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jang, Byung-Koog (Research Center for Structural Materials, National Institute for Materials) ;
  • Kim, Seongwon (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
  • 김선주 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 오윤석 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 장병국 (물질재료연구기구 구조재료연구센터) ;
  • 김성원 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Received : 2016.12.14
  • Accepted : 2016.12.28
  • Published : 2016.12.31

Abstract

In order to comply with demand for high efficient gas turbines operating at higher temperatures, considerable amounts of research efforts have been performed with searching for the next-generation thermal barrier coatings (TBCs) with respect to coating materials as well as processing methods. In this study, thermal barrier coatings in the $(La_{1-x}Gd_x)_2Zr_2O_7$ system, which is one of the most versatile materials replacing yttria-stabilized zirconia (YSZ), are fabricated by suspension plasma spray with suspension made of synthesized powders via solidstate reaction. Dense, $100{\sim}400{\mu}m$ thick coatings of fluorite-phase zirconate with moderate amount of segmented microstructures are obtained by using suspension plasma spray. Phase formation and thermal diffusivity are characterized with coating compositions. The feasibility of $(La_{1-x}Gd_x)_2Zr_2O_7$ coatings for TBC applications is also discussed.

Keywords

References

  1. D. R. Clarke, S. R. Phillpot, Thermal Barrier Coating Materials, Mater. Today, 8 (2005) 22-29.
  2. R. Vassen, M. O. Jarligo, T. Steinke, D. E. Mack, D. Stover, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 205 (2010) 938-942. https://doi.org/10.1016/j.surfcoat.2010.08.151
  3. D. R. Clarke, M. Oechsner, N. P. Padture, Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines, MRS Bull., 37 (2012) 891-898. https://doi.org/10.1557/mrs.2012.232
  4. C.-S. Kwon, S.-M. Lee, Y.-S. Oh, H.-T. Kim, B.-K. Jang, S. Kim, Structure and Thermal Conductivity of Thermal Barrier Coatings in Lanthanum/Gadolinium Zirconate System Fabricated via Suspension Plasma Spray(in Korean), J. Korean Inst. Surf. Eng., 47 (2014) 316-322. https://doi.org/10.5695/JKISE.2014.47.6.316
  5. S. Sampath, U. Schulz, M. O. Jarligo, S. Kuroda, S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, MRS Bull., 37 (2012) 903-910. https://doi.org/10.1557/mrs.2012.233
  6. W. Pan, S. R. Phillpot, C. Wan, A. Chernatynskiy, Z. Qu, Low Thermal Conductivity Oxides, MRS Bull., 37 (2012) 917-922. https://doi.org/10.1557/mrs.2012.234
  7. C.-S. Kwon, S. Lee, S.-M. Lee, Y.-S. Oh, H.-T. Kim, B.-K. Jang, S. Kim, Fabrication and Characterization of $La_2Zr_2O_7$/YSZ Double-Ceramic-Layer Thermal Barrier Coatings Fabricated by Suspension Plasma Spray(in Korean), J. Korean Inst. Surf. Eng., 48 (2015) 315-321. https://doi.org/10.5695/JKISE.2015.48.6.315
  8. R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stover, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 83 (2000) 2023-2028.
  9. J. Wu, X. Wei, N. P. Padture, P. G. Klemens, M. Gell, E. Garcia, P. Miranzo, M. I. Osendi, Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications, J. Am. Ceram. Soc., 85 (2002) 3031-3035.
  10. S.-J. Kim, W.-J. Lee, C.-S. Kwon, S.-M. Lee, Y.-S. Oh, H.-T. Kim, D.-S. Im, S. Kim, Phase Formation and Thermo-physical Properties of $GdO_{1.5}_-ZrO_2$ System for Thermal Barrier Coating Application(in Korean), J. Korean Ceram. Soc., 51 (2014) 554-559. https://doi.org/10.4191/kcers.2014.51.6.554
  11. J. W. Fergus, Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines, Metall. Mater. Trans. E, (2014) 1-14.
  12. X. Q. Cao, R. Vassen, D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Euro. Ceram. Soc., 24 (2004) 1-10. https://doi.org/10.1016/S0955-2219(03)00129-8
  13. R. Vassen, H. Kassner, A. Stuke, F. Hauler, D. Hathiramani, D. Stover, Advanced Thermal Spray Technologies for Applications in Energy Systems, Surf. Coat. Technol., 202 (2008) 4432-4437. https://doi.org/10.1016/j.surfcoat.2008.04.022
  14. U. Schulz, B. Saruhan, K. Fritscher, C. Leyens, Review on Advanced EB-PVD Ceramic Topcoats for TBC Applications, Inter. J. Appl. Ceram. Technol., 1 (2004) 302-315.
  15. W.-J. Lee, Y.-S. Oh, S.-M. Lee, H.-T. Kim, D.-S. Lim, S. Kim, Fabrication and Characterization of 7.5 wt% $Y_2O_3-ZrO_2$ Thermal Barrier Coatings Deposited by Suspension Plasma Spray(in Korean), J. Korean Ceram. Soc., 51 (2014) 598-604. https://doi.org/10.4191/kcers.2014.51.6.598
  16. W. Fan, Y. Bai, Review of Suspension and Solution Precursor Plasma Sprayed Thermal Barrier Coatings, Ceram. Inter., 42 (2016) 14299-14312. https://doi.org/10.1016/j.ceramint.2016.06.063
  17. K. VanEvery, M. J. M. Krane, R. W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 20 (2011) 817-828. https://doi.org/10.1007/s11666-011-9632-2
  18. N. Curry, Z. Tang, N. Markocsan, P. Nylen, Influence of Bond Coat Surface Roughness on the Structure of Axial Suspension Plasma Spray Thermal Barrier Coatings - Thermal and Lifetime Performance, Surf. Coat. Technol., 268 (2015) 15-23. https://doi.org/10.1016/j.surfcoat.2014.08.067
  19. C. Wan, W. Pan, Q. Xu, Y. Qin, J. Wang, Z. Qu, M. Fang, Effect of Point Defects on the Thermal Transport Properties of $(La_xGd_{1-x})_2Zr_2O_7$: Experiment and Theoretical Model, Phys. Rev. B, 74 (2006) 144109. https://doi.org/10.1103/PhysRevB.74.144109
  20. B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, 3rd Ed., Prentice Hall, New Jersey (2001) 388.
  21. D. Michel, R. Collongues, Study by Raman Spectroscopy of Order-Disorder Phenomena Occurring in Some Binary Oxides with Fluorite-Related Structures, J. Raman Spectro., 5 (1976) 163-180. https://doi.org/10.1002/jrs.1250050208
  22. R. Leckie, S. Kramer, M. Ruhle,C. Levi, Thermochemical Compatibility between Alumina and $ZrO_2-GdO_{3/2}$ Thermal Barrier Coatings, Acta Mater., 53 (2005) 3281-3292. https://doi.org/10.1016/j.actamat.2005.03.035
  23. H. Lehmann, D. Pitzer, G. Pracht, R. Vassen,D. Stover, Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System, J. Am. Ceram. Soc., 86 (2003) 1338-1344. https://doi.org/10.1111/j.1151-2916.2003.tb03473.x
  24. C. Kittel, P. McEuen, Introduction to Solid State Physics, Wiley New York (1986) 125.