DOI QR코드

DOI QR Code

Numerical Analysis of a Liquid Sheet Flow around a Simplified Sprinkler Head Using a CFD Model

CFD 모델을 이용한 단순 스프링클러 헤드 주위의 액막 유동해석

  • Received : 2016.11.23
  • Accepted : 2016.12.12
  • Published : 2016.12.31

Abstract

The present study examined the free surface flow of a liquid sheet near a sprinkler head using a Computational Fluid Dynamics (CFD) model and considered the feasibility of the empirical model for predicting the initial spray characteristics of the sprinkler head through a comparison of the CFD results. The CFD calculation for a simplified sprinkler geometry considering the nozzle and deflector were performed using the commercially available CFD package, CFX 14.0 with the standard $k-{\varepsilon}$ turbulence model and theVolume of Fluid (VOF) method. The predicted velocity of the empirical model at the edge of deflector were in good agreement with that of the CFD model for the flat plate region but there was a certain discrepancy between the two models for the complex geometry region. The mean droplet diameter predicted by the empirical model differed significantly from the measured value of the real sprinkler head. On the other hand, the empirical model can be used to understand the mechanism of droplet formation near the sprinkler head and predict the initial spray characteristics for cases without experimental data.

본 연구는 스프링클러 헤드 근처에서 형성되는 액막의 자유표면 유동에 대해 CFD 모델을 적용하여 해석하고 스프링클러의 초기분무 특성 예측을 위한 기존 이론식의 결과와 비교를 통해 이론 모델의 타당성을 검토하였다. CFD 해석은 상용 해석프로그램인 CFX 14.0을 이용하였으며 노즐과 디플렉터로 이루어진 단순형상에 대해 표준난류모델과 VOF법을 적용하여 해석을 수행하였다. 평판부의 디플렉터 끝단에서 속도분포는 CFD 해석과 경험식이 매우 잘 일치된 결과를 보였으나 기하학적 형상이 복잡한 부분에서는 속도분포의 차이를 보였다. 이론모델에서 예측된 평균액적크기는 실제 스프링클러 헤드에서 측정된 평균액적크기에 대한 이전 연구결과와 큰 차이를 보였다. 그러나 이론 모델은 스프링클러 헤드의 초기 액적형성과정의 메커니즘을 이해하고 실험적 접근이 용이하지 않은 상황에서 분무 액적의 특성을 예측하는데 유동한 도구로 활용될 수 있다.

Keywords

References

  1. A. D. Putori, D. Everest and A. Atreya, "Simultaneous Measurements of Drop Size and Velocity in Large Scale Sprinkler Flows Using Particle Tracking and Laser-Induced Fluorescence", NIST GCR-03-852 (2003).
  2. D. T. Sheppard, "Spray Characteristics of Fire Sprinklers", Ph.D Thesis, Dept. of Mechanical Engineering, Northwestern University (2002).
  3. S. C. Kim and J. Y. Kim, "An Experimental Study on the Droplet Size Distribution of Sprinkler Spray for Residential Building", Journal of ILASS-Korea, Vol. 20, No. 3, pp. 175-180 (2015). https://doi.org/10.15435/JILASSKR.2015.20.3.175
  4. P. H. Dundas, "The Scaling of Sprinkler Discharge: Prediction of Droplet Size", FMRC Series No. 18792, Factory Mutual Research Corporation, Norwood, MA (1974).
  5. D. Wu, D. Guillemin and A. W. Marshall, "A Modeling Basis for Predicting the Initial Sprinkler Spray", Fire Safety Journal, Vol. 42, pp. 283-294 (2007). https://doi.org/10.1016/j.firesaf.2006.11.007
  6. N. Ren, "Advances in Characterizing Fire Sprinkler Sprays", Ph. D. Thesis, Dept. of Fire Protection Engineering, Univ. of Maryland (2010).
  7. N. Ren and A. W. Marshall, "Characterizing the Initial Spray from Large Weber Number Impinging Jets", International Journal of Multiphase Flow, Vol. 58, pp. 205-213 (2014). https://doi.org/10.1016/j.ijmultiphaseflow.2012.08.004
  8. E. J. Watson, "The Radial Spread of a Liquid Jet over a Horizontal Plane", Journal of Fluid Mechanics, Vol. 20, pp. 481-499 (1964). https://doi.org/10.1017/S0022112064001367
  9. N. Dombrowski and W. R. Johns, "The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets", Chemical Engineering Science, Vol. 18, pp. 203-214 (1963). https://doi.org/10.1016/0009-2509(63)85005-8
  10. ANSYS Co., ANSYS Ver.14 (2012).