DOI QR코드

DOI QR Code

Review on the Determination of Frumkin, Langmuir, and Temkin Adsorption Isotherms at Electrode/Solution Interfaces Using the Phase-Shift Method and Correlation Constants

  • Chun, Jinyoung (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Chun, Jang H. (Kwangwoon University)
  • Received : 2016.09.01
  • Accepted : 2016.09.27
  • Published : 2016.12.01

Abstract

This review article described the electrochemical Frumkin, Langmuir, and Temkin adsorption isotherms of over-potentially deposited hydrogen (OPD H) and deuterium (OPD D) for the cathodic $H_2$ and $D_2$ evolution reactions (HER, DER) at Pt, Ir, Pt-Ir alloy, Pd, Au, and Re/normal ($H_2O$) and heavy water ($D_2O$) solution interfaces. The Frumkin, Langmuir, and Temkin adsorption isotherms of intermediates (OPD H, OPD D, etc.) for sequential reactions (HER, DER, etc.) at electrode/solution interfaces are determined using the phase-shift method and correlation constants, which have been suggested and developed by Chun et al. The basic procedure of the phase-shift method, the Frumkin, Langmuir, and Temkin adsorption isotherms of OPD H and OPD D and related electrode kinetic and thermodynamic parameters, i.e., the fractional surface coverage ($0{\leq}{\theta}{\leq}1$) vs. potential (E) behavior (${\theta}$ vs. E), equilibrium constant (K), interaction parameter (g), standard Gibbs energy (${\Delta}G_{\theta}{^{\circ}}$) of adsorption, and rate (r) of change of ${\Delta}G_{\theta}{^{\circ}}$ with ${\theta}$ ($0{\leq}{\theta}{\leq}1$), at the interfaces are briefly interpreted and summarized. The phase-shift method and correlation constants are useful and effective techniques to determine the Frumkin, Langmuir, and Temkin adsorption isotherms and related electrode kinetic and thermodynamic parameters (${\theta}$ vs. E, K, g, ${\Delta}G_{\theta}{^{\circ}}$, r) at electrode/solution interfaces.

Keywords

References

  1. Gileadi, E., Kirowa-Eisner, E. and Penciner, J., "Interfacial electrochemistry," Addison-Wesley: Reading, MA, 1975.
  2. Bockris, JO'M. and Khan, S. U. M., "Surface electrochemistry," Plenum Press: New York, 1993.
  3. Conway, B. E. and Jerkiewicz, G., Eds., "Electrochemistry and materials science of cathodic hydrogen absorption and adsorption," Electrochemical Society Proceedings, Vol. 94-21; The Electrochemical Society: Pennington, NJ, 1995.
  4. Jerkiewicz, G. and Marcus, P., Eds., "Electrochemical surface science and hydrogen adsorption and absorption," Electrochemical Society Proceedings, Vol. 97-16; The Electrochemical Society: Pennington, NJ, 1997.
  5. Jerkiewicz, G., "Hydrogen sorption at/in electrodes," Prog. Surf. Sci., 57, 137-186(1998). https://doi.org/10.1016/S0079-6816(98)00015-X
  6. Jerkiewicz, G., Feliu, J. M. and Popov, B. N., Eds., "Hydrogen at surface and interfaces," Electrochemical Society Proceedings, Vol. 2000-16; The Electrochemical Society: Pennington, NJ, 2000.
  7. Jerkiewicz, G., "Electrochemical hydrogen adsorption and absorption. Part 1: Under-potential deposition of hydrogen," Electrocatal., 1, 179-199(2010). https://doi.org/10.1007/s12678-010-0022-1
  8. Chun, J. H., "Methods for estimating adsorption isotherms in electrochemical systems," U.S. Patent 6,613,218(2003).
  9. Chun, J. H. and Ra, K. H., "The phase-shift method for the Frumkin adsorption isotherms at the $Pd/H_2SO_4$ and KOH solution interfaces," J. Electrochem. Soc., 145, 3794-3798(1998). https://doi.org/10.1149/1.1838875
  10. Chun, J. H., Ra, K. H. and Kim, N. Y., "Langmuir adsorption isotherms of over-potentially deposited hydrogen at poly-Au and $Rh/H_2SO_4$ aqueous electrolyte interfaces; Qualitative analysis using the phase-shift method," J. Electrochem. Soc., 150, E207-217(2003). https://doi.org/10.1149/1.1554919
  11. Chun, J. H., Jeon, S. K., Ra, K. H. and Chun, J. Y., "The phaseshift method for determining Langmuir adsorption isotherms of over-potentially deposited hydrogen for the cathodic $H_2$ evolution reaction at poly-Re/aqueous electrolyte interfaces," Int. J. Hydrogen Energy, 30, 485-499(2005).
  12. Chun, J. H., Jeon, S. K. and Chun, J. Y., "The phase-shift method and correlation constants for determining adsorption isotherms of hydrogen at a palladium electrode interface," Int. J. Hydrogen Energy, 32, 1982-1990(2007). https://doi.org/10.1016/j.ijhydene.2006.08.031
  13. Chun, J. H., Kim, N. Y. and Chun, J. Y., "Determination of adsorption isotherms of hydrogen and hydroxide at Pt-Ir alloy electrode interfaces using the phase-shift method and correlation constants," Int. J. Hydrogen Energy, 33, 762-774(2008). https://doi.org/10.1016/j.ijhydene.2007.10.044
  14. Chun, J. Y. and Chun, J. H., "Correction and supplement to the determination of the optimum intermediate frequency for the phase-shift method [Chun et al., Int. J. Hydrogen Energy 30 (2005) 247-259, 1423-1436]," Int. J. Hydrogen Energy, 33, 4962-4965 (2008). https://doi.org/10.1016/j.ijhydene.2008.06.034
  15. Chun, J. Y. and Chun, J. H., "A negative value of the interaction parameter for over-potentially deposited hydrogen at Pt, Ir, and Pt-Ir alloy electrode interfaces," Electrochem. Commun., 11, 744-747(2009). https://doi.org/10.1016/j.elecom.2009.01.027
  16. Chun, J., Lee, J. and Chun, J. H., "Determination of adsorption isotherms of over-potentially deposited hydrogen on platinum and iridium in KOH aqueous solution using the phase-shift method and correlation constants," J. Chem. Eng. Data, 55, 2363-2372 (2010). https://doi.org/10.1021/je900805q
  17. Chun, J., Kim, N. Y. and Chun, J. H., "Determination of adsorption isotherms of hydroxide and deuteroxide on Pt-Ir alloy in LiOH solutions using the phase-shift method and correlation constants," J. Chem. Eng. Data, 55, 3825-3833(2010). https://doi.org/10.1021/je100328d
  18. Chun, J., Kim, N. Y. and Chun, J. H., "Determination of the adsorption isotherms of hydrogen and deuterium isotopes on a Pt-Ir alloy in LiOH solutions using the phase-shift method and correlation constants," J. Chem. Eng. Data, 55, 5598-5607(2010). https://doi.org/10.1021/je100418n
  19. Chun, J., Kim, N. Y. and Chun, J. H., "Determination of the adsorption isotherms of over-potentially deposited hydrogen on a Pt-Ir alloy in $H_2SO_4$ aqueous solution using the phase-shift method and correlation constants," J. Chem. Eng. Data, 56, 251-258(2011). https://doi.org/10.1021/je100837q
  20. Chun, J. and Chun, J. H., In "Developments in electrochemistry," Chun, J. H. ed., InTech, Rijeka, 2012, Ch. 1, pp. 3-27 (http:// www.intechopen.com/books/developments-in-electrochemistry).
  21. Chun, J. and Chun, J. H., "Determination of the Frumkin and Temkin adsorption isotherms of under-potentially deposited hydrogen at Pt group metal interfaces using the standard Gibbs energy of adsorption and correlation constants," J. Korean Electrochem. Soc., 16, 211-216(2013). https://doi.org/10.5229/JKES.2013.16.4.211
  22. Garcia-Garcia, R., Rivera, J. G., Anta-no-Lopez, R., Casta-neda- Olivares, F. and Orozco, G., "Impedance spectra of the cathodic hydrogen evolution reaction on polycrystalline rhenium," Int. J. Hydrogen Energy, 41, 4660-4669(2016). https://doi.org/10.1016/j.ijhydene.2016.01.010
  23. Gileadi, E., Kirowa-Eisner, E. and Penciner, J., "Interfacial Electrochemistry," Addison-Wesley, Reading, MA, 1975, pp. 89-91.
  24. Harrington, D. A. and Conway, B. E., "AC Impedance of Faradaic Reactions Involving Electrosorbed Intermediates-I. Kinetic theory," Electrochim. Acta, 32, 1703-1712(1987). https://doi.org/10.1016/0013-4686(87)80005-1
  25. Gileadi, E., "Electrode Kinetics," VCH: New York, 1993, pp. 293-296.
  26. Gileadi, E., "Electrode Kinetics," VCH: New York, 1993, pp. 261-271.
  27. Gileadi, E., "Electrode Kinetics," VCH: New York, 1993, pp. 303-305.

Cited by

  1. Isotopic Shifts of the Frumkin and Temkin Adsorption Isotherms of H and D at Pt/Alkaline Solution Interfaces: Analysis Using the Phase-Shift Method vol.166, pp.6, 2016, https://doi.org/10.1149/2.1141906jes
  2. Sorption of Organic Pollutants by Humic Acids: A Review vol.25, pp.4, 2016, https://doi.org/10.3390/molecules25040918
  3. Simulation of nanoparticle transport and adsorption in a microfluidic lung-on-a-chip device vol.14, pp.4, 2016, https://doi.org/10.1063/5.0011353