References
- J. O. Neill, Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, 1st ed., 3-5, Review on Antimicrobial Resistance, London, UK (2014).
- G. V. Doern, K. P. Heilmann, H. K. Huynh, P. R. Rhomberg, S. L. Coffman, and A. B. Brueggemann, Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in the United States during 1999-2000, including a comparison of resistance rates since 1994-1995, Antimicrob. Agents Chemother., 45, 1721-1729 (2001). https://doi.org/10.1128/AAC.45.6.1721-1729.2001
- N. B. Shoemaker, H. Vlamakis, K. Hayes, and A. A. Salyers, Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl. Environ. Microbiol., 67, 561-568 (2001). https://doi.org/10.1128/AEM.67.2.561-568.2001
- R. M. Klevens, J. R. Edwards, F. C. Tenover, L. C. McDonald, T. Horan, and R. Gaynes and National Nosocomial Infections Surveillance System, Changes in the epidemiology of methicillin- resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003, Clin. Infect. Dis., 42, 389-391 (2006). https://doi.org/10.1086/499367
- M. E. Falagas and I. A. Bliziotis, Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era?, Int. J. Antimicrob. Agents, 29, 630-636 (2007). https://doi.org/10.1016/j.ijantimicag.2006.12.012
- S. Rodriguez-Mazaz and H. S. Weinberg, Meeting report: Pharmaceuticals in water-An interdisciplinary approach to a public health challenge, Environ. Health Perspect., 118, 1016-1020 (2010). https://doi.org/10.1289/ehp.0901532
- L. Zhao, Y. H. Dong, and H. Wang, Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China, Sci. Total Environ., 408, 1069-1075 (2010). https://doi.org/10.1016/j.scitotenv.2009.11.014
- F. Baquero, J. L. Martinez, and R. Canton, Antibiotics and antibiotic resistance in water environments, Curr. Opin. Biotechnol., 19, 260-265 (2008). https://doi.org/10.1016/j.copbio.2008.05.006
- A. J. Alanis, Resistance to antibiotics: are we in the postantibiotic era?, Arch. Med. Res., 36, 697-705 (2005). https://doi.org/10.1016/j.arcmed.2005.06.009
- S. B. Levy, The Antibiotic Paradox; How the Misuse of Antibiotics Destroys Their Curative Powers, 2nd ed., 1-14, Perseus Publishing, Cambridge, MA, USA (2002).
- M. Seifrtova, L. Novakova, C. Lino, A. Pena, and P. Solich, An overview of analytical methodologies for the determination of antibiotics in environmental waters, Anal. Chim. Acta, 649, 158-179 (2009). https://doi.org/10.1016/j.aca.2009.07.031
- A. van Wezel, M. Mons, and W. van Delft, New methods to monitor emerging chemicals in the drinking water production chain, J. Environ. Monit., 12, 80-89 (2010). https://doi.org/10.1039/B912979K
- W. Giger, Hydrophilic and amphiphilic water pollutants: Using advanced analytical methods for classic and emerging contaminants, Anal. Bioanal. Chem., 393, 37-44 (2009). https://doi.org/10.1007/s00216-008-2481-2
- V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, Point of care diagnostics: status and future, Anal. Chem., 84, 487-515 (2012). https://doi.org/10.1021/ac2030199
- E. B. Bahadir and M. K. Sezginturk, Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses, Anal. Biochem., 478, 107-120 (2015). https://doi.org/10.1016/j.ab.2015.03.011
- N. A. Mungroo and S. Neethirajan, Biosensors for the detection of antibiotics in poultry industry - A review, Biosensors, 4, 472-493 (2014). https://doi.org/10.3390/bios4040472
- J. Kling, Moving diagnostics from the bench to the bedside, Nat. Biotechnol., 24, 891-893 (2006). https://doi.org/10.1038/nbt0806-891
- M. A. Burns, Everyone's a (future) chemist, Science, 296, 1818-1819 (2002). https://doi.org/10.1126/science.1073562
- A. Rasooly, Biosensor technologies, Methods, 37, 1-3 (2005). https://doi.org/10.1016/j.ymeth.2005.05.004
- H. Craighead, Future lab-on-a-chip technologies forinterrogating individual molecules, Nature, 442, 387-393 (2006). https://doi.org/10.1038/nature05061
- H. Zhu and M. Snyder, Protein chip technology, Curr. Opin. Chem. Biol., 7, 55-63 (2003). https://doi.org/10.1016/S1367-5931(02)00005-4
- S. Song, L. Wang, J. Li, J. Zhao, and C. Fan, Aptamer-based biosensors, Trends Anal. Chem., 27, 108-117 (2008). https://doi.org/10.1016/j.trac.2007.12.004
- M. Uttamchandani, J. Wang, and S. Q. Yao, Protein and small molecule microarrays: Powerful tools for high-throughput proteomics, Mol. BioSys., 2, 58-68 (2006). https://doi.org/10.1039/B513935J
- H. J. Lee, S. Kim, H. Y. Han, and E. Kim, Synthesis of plasmonic gold nanoparticles with different shapes and their applications to surface plasmon resonance biosensors, Polym. Sci. Technol., 26, 9-15 (2015).
- K. Reder-Christ and G. Bendas, Biosensor applications in the field of antibiotic research-a review of recent developments, Sensors (Basel), 11, 9450-9466 (2011). https://doi.org/10.3390/s111009450
- J. Yuan, R. Oliver, M. I. Aguilar, and Y. Wu, Surface plasmon resonance assay for chloramphenicol, Anal. Chem., 80, 8329-8333 (2008). https://doi.org/10.1021/ac801301p
- M. Frasconi, R. Tel-Vered, M. Riskin, and I. Willner, Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites, Anal. Chem., 82, 2512-2519 (2010). https://doi.org/10.1021/ac902944k
- S. R. Raz, M. G. E. G. Bremer, W. Haasnoot, and W. Norde, Label-Free and Multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor, Anal. Chem., 81, 7743-7749 (2009). https://doi.org/10.1021/ac901230v
- J. Adrian, S. Pasche, J. M. Diserens, F. Sanchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk, Biosens. Bioelectron., 24, 3340-3346 (2009). https://doi.org/10.1016/j.bios.2009.04.036
- S. Korposh, I. Chianella, A. Guerreiro, S. Caygill, S. Piletsky, S. W. James, and R. P. Tatam, Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles, Analyst, 139, 2229-2236 (2014). https://doi.org/10.1039/C3AN02126B
- A. Kling, C. Chatelle, L. Armbrecht, E. Qelibari, J. Kieninger, C. Dincer, W. Weber, and G. Urban, Multianalyte antibiotic detection on an electrochemical microfluidic platform, Anal. Chem., 88, 10036-10043 (2016). https://doi.org/10.1021/acs.analchem.6b02294
- A. A. Rowe, E. A. Miller, and K. W. Plaxco, Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor, Anal. Chem., 82, 7090-7095 (2010). https://doi.org/10.1021/ac101491d
- F. Giroud, K. Gorgy, C. Gondran, S. Cosnier, D. G. Pinacho, M. P. Marco, and F. J. Sanchez-Baeza, Impedimetric immunosensor based on a polypyrrole-antibiotic model film for the label-free picomolar detection of ciprofloxacin, Anal. Chem., 81, 8405-8409 (2009). https://doi.org/10.1021/ac901290m
- P. Peljo and H. H. Girault, Liquid/Liquid Interfaces, Electrochemistry at, Encyclopedia of Analytical Chemistry, 2nd ed., 1-28, John Wiley & Sons, NY, USA (2012).
- H. R. Kim, S. H. Baek, and H. J. Lee, Creating Electrochemical sensors utilizing ion transfer reactions across micro-liquid/liquid interfaces, Appl. Chem. Eng., 24, 443-455 (2013).
- M. Velicky, A. N. J. Rodgers, R. A. W. Dryfe, and K. Tam, Use of voltammetry for in vitro equilibrium and transport studies of ionisable drugs, ADMET DMPK, 2, 143-156 (2014).
- E. V. Vladimirova, A. A. Dunaeva, O. M. Petrukhin, and E. V. Shipulo, Study of the transfer of aminoglycoside antibiotics through the phase boundary water/o-nitrophenyl octyl ether by voltammetry at the interface of two immiscible electrolyte solutions, J. Anal. Chem., 68, 253-260 (2013). https://doi.org/10.1134/S106193481303012X
- H. R. Kim, C. M. Pereira, H. Y. Han, and H. J. Lee, Voltammetric studies of topotecan transfer across liquid/liquid interfaces and sensing applications, Anal. Chem., 87, 5356-5362 (2015). https://doi.org/10.1021/acs.analchem.5b00653
- H. Han, Investigation on Antibiotic Transfer Processes across an Interface between Two Immiscible Electrolyte Solutions, MS Thesis, Kyungpook National University, Daegu, Korea (2016).
- B. Halling-Sorensen, S. Nors Nielsen, P. F. Lanzky, F. Ingerslev, H. C. Holten Lutzhoft, and S. E. Jorgensen, Occurrence, fate and effects of pharmaceutical substances in the environment-a review, Chemosphere, 36, 357-393 (1998). https://doi.org/10.1016/S0045-6535(97)00354-8
- L. H. M. L. M. Santos, A. N. Araujo, A. Fachini, A. Pena, C. Delerue-Matos, and M. C. B. S. M. Montenegro, Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment, J. Hazard. Mater., 175, 45-95 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.100
- Y. Kim, J. Jung, M. Kim, J. Park, A. B. A. Boxall, and K. Choi, Prioritizing veterinary pharmaceuticals for aquatic environment in Korea, Environ. Toxicol. Pharmacol., 26, 167-176 (2008). https://doi.org/10.1016/j.etap.2008.03.006
- X. Chen, D. Kim, and S. Hong, The carbon nanotube-based nanobiosensor: a key component for ubiquitous real-time bioscreening system?, Nanomedicine, 9, 565-567 (2014). https://doi.org/10.2217/nnm.14.7
- J. Yuan, J. Addo, M. I. Aguilar, and Y. Wu, Surface plasmon resonance assay for chloramphenicol without surface regeneration, Anal. Biochem., 390, 97-99 (2009). https://doi.org/10.1016/j.ab.2009.04.003
- N. de-los-Santos-Alvarez, M. J. Lobo-Castanon, A. J. Miranda-Ordieres, and P. Tunon-Blanco, SPR sensing of small molecules with modified RNA aptamers: detection of neomycin B, Biosens. Bioelectron., 24, 2547-2553 (2009). https://doi.org/10.1016/j.bios.2009.01.011
- F. Fernandez, K. Hegnerova, M. Piliarik, F. Sanchez-Baeza, J. Homola, and M. P. Marco, A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples, Biosens. Bioelectron., 26, 1231-1238 (2010). https://doi.org/10.1016/j.bios.2010.06.012
- A. Zengin, U. Tamer, and T. Caykara, Extremely sensitive sandwich assay of kanamycin using surface-enhanced Raman scattering of 2-mercaptobenzothiazole labeled gold@silver nanoparticles, Anal. Chim. Acta, 817, 33-41 (2014). https://doi.org/10.1016/j.aca.2014.01.042
- J. Zdunek, E. Benito-Pena, A. Linares, A. Falcimaigne-Cordin, G. Orellana, K. Haupt, and M. C. Moreno-Bondi, Surface-imprinted nanofilaments for europium-amplified luminescent detection of fluoroquinolone antibiotics, Chemistry, 19, 10209-10216 (2013). https://doi.org/10.1002/chem.201300101
- B. G. Healey and D. R. Walt, Improved fiber-optic chemical sensor for penicillin, Anal. Chem., 67, 4471-4476 (1995). https://doi.org/10.1021/ac00120a007
- M. K. Pawar, K. C. Tayade, S. K. Sahoo, P. P. Mahulikar, A. S. Kuwar, and B. L. Chaudhari, Selective ciprofloxacin antibiotic detection by fluorescent siderophore pyoverdin, Biosens. Bioelectron., 81, 274-279 (2016). https://doi.org/10.1016/j.bios.2016.03.003
-
P. H. Chan, H. B. Liu, Y. W. Chen, K. C. Chan, C. W. Tsang, Y. C. Leung, and K. Y. Wong, Rational design of a novel fluorescent biosensor for
${\beta}$ -lactam antibiotics from a Class A a-lactamase, J. Am. Chem. Soc., 126, 4074-4075 (2004). https://doi.org/10.1021/ja038409m -
P. H. Chan, P. K. So, D. L. Ma, Y. Zhao, T. S. Lai, W. H. Chung, K. C. Chan, K. F. Yiu, H. W. Chan, F. M. Siu, C. W. Tsang, Y. C. Leung, and K. Y. Wong, Fluorophore-labeled
${\beta}$ -lactamase as a biosensor for${\beta}$ -lactam antibiotics: A study of the biosensing process, J. Am. Chem. Soc., 130, 6351-6361 (2008). https://doi.org/10.1021/ja076111g - Y. M. Liu, Y. X. Jia, and W. Tian, Determination of quinolone antibiotics in urine by capillary electrophoresis with chemiluminescence detection, J. Sep. Sci., 31, 3765-3771 (2008). https://doi.org/10.1002/jssc.200800373
- J. Kurittu, S. Lonnberg, M. Virta, and M. Karp, A group-specific microbiological test for the detection of tetracycline residues in raw milk, J. Agric. Food Chem., 48, 3372-3377 (2000). https://doi.org/10.1021/jf9911794
- P. Dzomba, J. Kugara, and M. F. Zaranyika, Extraction of tetracycline antimicrobials from river water and sediment: a comparative study of three solid phase extraction methods, Afr. J. Pharm. Pharmacol., 9, 523-531 (2015). https://doi.org/10.5897/AJPP2015.4341
- K. C. Ahn, A. Ranganathan, C. S. Bever, S. H. Hwang, E. B. Holland, K. Morisseau, I. N. Pessah, B. D. Hammock, and S. J. Gee, Detection of the Antimicrobial Triclosan in Environmental Samples by Immunoassay, Environ. Sci. Technol., 50, 3754-3761 (2016). https://doi.org/10.1021/acs.est.5b05357
- C. Zhou, X. Zhang, X. Huang, X. Guo, Q. Cai, and S. Zhu, Rapid detection of chloramphenicol residues in aquatic products using colloidal gold immunochromatographic assay, Sensors (Basel), 14, 21872-21888 (2014). https://doi.org/10.3390/s141121872
- A. L. Saber, M. A. Elmosallamy, H. M. Killa, and M. M. Ghoneim, Selective potentiometric method for determination of flucloxacillin antibiotic, J. Taibah Univ. Sci., 7, 195-201 (2013). https://doi.org/10.1016/j.jtusci.2013.06.002
- Y. S. Kim, J. H. Niazi, and M. B. Gu, Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip, Anal. Chim. Acta, 634, 250-254 (2009). https://doi.org/10.1016/j.aca.2008.12.025
- J. Zhang, B. Zhang, Y. Wu, S. Jia, T. Fan, Z. Zhang, and C. Zhang, Fast determination of the tetracyclines in milk samples by the aptamer biosensor, Analyst, 135, 2706-2710 (2010). https://doi.org/10.1039/c0an00237b
- B. Chen, M. Ma, and X. Su, An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes, hematein, and beta-lactamase on glassy carbon electrode, Anal. Chim. Acta, 674, 89-95 (2010). https://doi.org/10.1016/j.aca.2010.06.014
- M. Jacobs, V. J. Nagaraj, T. Mertz, A. P. Selvam, T. Ngo, and S. Prasad, An electrochemical sensor for the detection of antibiotic contaminants in water, Anal. Methods, 5, 4325-4329 (2013). https://doi.org/10.1039/c3ay40994e
Cited by
- A Study on Ozonation of Sulfamethoxazole vol.35, pp.6, 2016, https://doi.org/10.15681/kswe.2019.35.6.459