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Introduction 

Tissue engineering and regenerative medicine has been high-
lighted for regeneration of tissues or organs to replace or repair 
damaged organs and tissues. To achieve the goal of tissue engi-
neering, scientists defined three major technological compo-
nents composing tissue engineering, which are cells, signaling 
molecules and scaffolds. Until now, various approaches have 
been explored to restore structures and functions of in vivo tis-
sues and organs. Tissue engineering products requires various 
technological backgrounds such as life science, medical sci-
ence, material science and mechanical engineering to take ad-
vantages of those major three components (3, 4). 

Recently, among the three essential components, scaffold 
fabrication is profoundly affected by the new technology, addi-
tive manufacturing, in other words, 3D printing (1, 2). In addi-

tion, 3D printing technology can also be combined with cell 
seeding processes. Various types of cells now can be printed 
with three dimensional, locational accuracy. to have spatially 
tailored manner. Three dimensional control of cell location is 
one of the major advantages of 3D printing. In clinical point of 
view, damaged tissues are usually irregular in shape and many 
different types of cells reside in the tissues (5, 6). Tissues com-
posed of single cells are rare, and most of the tissues have blood 
vessels, connective tissue components and other functional 
components. Further, blood vessels have endothelial layer, me-
dia, and adventitia in which different cell types are distributed. 
And connective tissues are composed of different types of cells 
for each specific tissue function. Conventional cell seeding tech-
niques have been limited success in three dimensional control 
of cell location. In contrast, 3D cell printing(hereafter we call 
“bioprinting”) has high spatial control mechanism with elec-
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tronic and mechanical accuracy, can allocate cells in the pro-
grammed position. With the advantage of spatial accuracy, 3D 
printing also has the powerful function of locating extracellu-
lar matrix (ECM) materials at the predetermined position (7-9). 

In the bio-printing, bio-inks are as important components as 
bio-printing technologies. The bio-ink is emerged as the use of 
ink-jet printing, including polymer and hydrogel for scaffolds, 
growth factors, cells in tissue engineering. In this review, we fo-
cus the hydrogel for scaffold (10), capable to provide cellular mi-
croenvironment (11, 12) and building blocks for 3D bio-print-
ing (13). The hydrogels are the polymeric materials derived 
from naturally or synthetically, capable of embedding water in 
their three-dimensional network. Hydrogels is considered can-
didate for engineered tissue structure due to their composi-
tional and structural similarities to the natural extracellular 
matrix. The key functions of hydrogel are deliver the embed-
ded cells to the desired position in the 3D structure, promote 
cellular reactivity compared to other polymeric scaffold, and 
permit transport of nutrients and growth factors to cellular 
proliferation and differentiation. In this review, we discuss the 

necessary properties of the hydrogels performing as bio-inks, 
and the principles of the bio-printing methods. In this review, 
3D printing technology and bioink materials for bioprinting 
will be discussed for the ‘more useful’ outputs in tissue engi-
neering and regenerative medicine (14). 

Bioprinting Technologies

Laser-assisted bio-printing
Laser-assisted bio-printing method (LaBP) is based on the 

concept of laser-induced forward transfer(LIFT), and is a pre-
cise technology using laser (15). LaBP is consists of two layers. 
Upper glass slide named donor layer that is a glass cover with 
an energy absorbing layer and a layer of biological materials 
containing cells (16). The laser absorbing layer is received the 
pulsed laser and transferred heat so generated high gas pres-
sure. Consequently, hydrogel precursor with cell ejected to-
ward lower glass slide named collector layer (16) (Fig. 1A). LaBP 
enables printing the hydrogels with a wide range of viscosity 
(1-300 mPa/s). This printing method does not have negative 

Fig. 1. Four classification for bio-printing systems. 
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affect the function of the embedded living cells (17), maintain-
ing the high cell viability (4). The cost of the printer is high and 
the printing speed to fabricate three-dimensional structure is 
not fast against the inkjet printing system (4). 

Inkjet printing
Inkjet printing technique is known as a most common print-

ing technique and in other words it is called drop-on-demand 
printing method (DODP) (18, 19). Inkjet printing is very fast 
(1-104 drops/s) when compared to other printing technologies 
and the cost of the printer is not expensive. Inkjet printers can 
be sorted into thermal and piezoelectric methods. Thermal 
inkjet printer known as bubble jet method can eject ink from 
the print head or nozzle by heating to create the pulse that ex-
pels droplets (Fig. 1B) (19). The heating and evaporation lead 
expansion of vapor, and then ink extruded from the nozzle by 
pressure caused by bubble expansion. Piezoelectric inkjet 
printer have inkjet nozzle and piezoelectric actuator that create 
pulse by electric signal, which extruded droplets from the noz-
zle (20). This printing method have advantages that high reso-
lution, reproducibility (21) and fast speed of printing. In order 
to avoid clogging, the hydrogel of high viscosity cannot use in 
this printing method (22). As the hydrogel viscosity increasing, 
it cannot squeeze out hydrogel and cells may be remain in the 
nozzle (23). It is critical drawback of inkjet printing method.

Extrusion printing
Extrusion printing is one of the most commonly used the 

printing methods for tissue engineering and it is modification 
printing method of inkjet printing (24). Depending on the op-
erating principle be divided in three systems. The systems are 
pneumatic, piston, screw. Pneumatic system is dispensed pre-
hydrogel solution containing living cells using compressed 
gases, but it is difficult to control the amount of the hydrogel 
that come out from the nozzle (25). Piston and screw are print-
ed by mechanical forces without gases and pre-hydrogel solu-
tion containing cells are dispensed by pump (Fig. 1C, D, E) (2). 
Extrusion printing is possible to print almost the hydrogels of 

various viscosities and it also can print the hydrogels of high 
cell density. However, cell viability is reduced when pre-hydro-
gel solution containing cells is printed because embedded cells 
in hydrogels are under massive stresses (2, 25).

Stereolithopraphy
Stereolithography (SLA) is similar to laser-assisted bio-print-

ing and widely used in tissue engineering field (Fig. 1F, 1G) (26). 
The pre-hydrogel solution is solidified by photo-initiated po-
lymerization to produce intricate 3D structure (27). Generally, 
SLA is can be divided into two different types: single-photon and 
multiphoton methods. The single-photon method is occurred 
by single photon absorption and this process can be led to pho-
to-initiator excitation (28). The multi-photon method is caused 
by solidification using two or more photons sequential or si-
multaneous absorption. The resolution of the SLA printing is 
superior to other printing methods (usually, 20 μm) (29). How-
ever, the embedded-cells’ viability is reduced because of the 
fabrication process of the 3D structure using SLA printing is 
cytotoxic (30).

Hydrogel Properties for Bio-Ink

Cell-laden hydrogels are used the term bio-inks and they are 
play a crucial role to fabricate three dimensional structures in 
3D bio-printing (52). Bio-inks are required for various proper-
ties because they provide chemically suitable microenviron-
ment in order to cell proliferation, differentiation, and migra-
tion, and also gives mechanically structural support in 3D 
printed structures (53). While the cells are growing in the 
printed structure, the 3D printed tissue architecture should be 
maintained. The printed structure needs enough stiffness rep-
resented by high viscosity and crosslink density (54). Further, 
high biocompatibility of the printed structure provides many 
chances for medical applications.

 Rheology 
In scientific field, rheology is the deformation of the flow of 

Table 1. Comparison of the most commonly used four bio-printing technologies

Cost Printing 
speed Viscosity Resolution Cell 

viability
Printed tissue
and organ Ref.

Inkjet Low Fast 3.5-12 mPa/s High 85% Blood vessel, bone, 
cartilage, and neuron

(31-34)

LaBP High Medium 1-300 mPa/s High (>20 um) 95% Blood vessel, bone, 
skin, and adipose

(35-38)

Extrusion Medium Slow 30 to >6x107 mPa/s Medium
(>100 um)

40-80% Blood vessel, bone, 
cartilage, neuron, and 
muscle

(39-48)

Stereo-lithography Low Fast Not limited High 85% Blood vessel and cartilage (49-51)
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materials when a force is applied into the materials from out-
side. When hydrogels are assessed as bio-inks in bio-printing, 
rheology is underestimated despite of its importance (55). Vis-
cosity and shear thinning are basic concepts that should be 
considered in rheological properties. These two concepts are 
highly relevant to bio-printing especially significant to the ex-
trusion printing methods (2). Viscosity is a property necessary 
to encapsulate uniform cells and it is determined by concentra-
tion and molecular weight of precursor solution of the bio-ink. 
As viscosity increased, collapse of printed 3D structures is de-
layed (56). However, there are limitations for cell proliferation 
and migration in high viscosity bioink materials. In bio-print-
ing using low viscosity hydrogels, 3D structures cannot main-
tain the form and produce the site of cell adhesion (57). Shear 
thinning is the properties related to printability and it is de-
fined to the inverse proportion between shear rate and viscosi-
ty (58). When shear stress applied to polymer solution, compli-
cated polymers are stretched and aligned and then viscosity is 
decreased. It has high viscosity not only in the syringe before 
extrusion but also after deposition. Only polymer solution pass 
through the nozzle, it has low viscosity (59). Christopher et al. 
reported 3D printing of shear-thinning hydrogels using hyal-
uronan acid (HA) into 3D constructs having open channels with 
high resolution (60). 

Gelation 
A necessary property to maintain printed 3D structures. As 

change with gelation time, printing fidelity can also be varied. 
So, gelation time is an important component for physical and 
chemical aspect of scaffold materials. Gelation time is mea-
sured to combine polymer precursor solution and cross-link-
ing agents using physical and chemical crosslinking methods. 
Short gelation time means good for shape stability. Also, viscos-
ity and gelation time are related to printability. Gelation time has 
relevance with crosslinking and is influenced by crosslinking 
agents and materials of precursor polymer solution. Physically 
crosslinked hydrogel bioinks are allowed reversible interac-
tions to keep uniform viscosity, and required good biocompati-
bility. However, physical-crosslinking systems are required post-
crosslinking process and structures are mechanically weak. 
Chemically crosslinked hydrogels also have same advantages 
with physical crosslinking and conducted more rapidly gelation 
than physical crosslinking. But, crosslinking agents may affect 
embedded living cells with polymer solution. 

Biocompatibility
Biocompatibility is related to various environments such as 

biological or mechanical environments. The term refers to the 
capability or reaction of the biomaterials against the response 
of the host (61). When the printed 3D structure using hydrogels 
is transplanted into the host’s bodies such as animals or humans, 
we must consider the biocompatibility of the hydrogel materi-
als (r). Biocompatibility is determined by various experiments. 
For example, cytocompatibility.

Materials for Bio-Inks

Materials used to bio-inks generally categorized two types. 
Natural-derived polymers such as gelatin, collagen, alginate 
and fibrin are studied in tissue engineering and generative medi-
cine and are used for materials of capsulated cells. Natural-de-
rived polymers are widely renowned for materials of bio-inks 
and isolated animals (62) Meanwhile modified polymers are 
produced using synthesized or mixed different polymers. In 
this section, characteristics of natural polymers and modified 
polymers summarized. Hydrogels of natural-derived materials 
are employed in the field of tissue engineering and regenerative 
medicine because natural-derived materials are similar to that 
of native tissues or organs in the body (63).

Natural-based polymers

Collagen 
Collagen is one of the natural polymers and main component 

in connective tissue that gives support (64). It is the most abun-
dant protein in mammals including humans, which is make up 
approximately 30% of the whole protein possessed in the body 
(62). Collagen is consisted of proline, glycine, glycine and hy-
droxyproline (65). Collagen have various different shape in the 
body, collagen is commonly existed in skin, bone and cartilage 
(66). Collagen regulates cell behaviors containing migration, 
proliferation, adhesion, and differentiation (67). The collagen 
hydrogel precursor containing cells is used for bio-printing. 
Lee et al. printed multi-layered skin tissue using collagen hydro-
gel containing keratinocytes and fibroblasts and demonstrated 
that collagen hydrogel is potential material as a skin scaffold 
(68). But, collagen almost used with other polymers because 
collagen hydrogel is too weak to fabricate the scaffolds (69).

Gelatin 
Gelatin is partially hydrolyzed form on collagen and it has 

high biocompatibility because it is obtained from collagen and 
structurally similar in both polymers (70). Gelatin has RGD se-
quences, which helps cell adhesion (71). It dissolves only when 
the temperature is higher than about 40℃. The gelatin solution 
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is changed into gel-like state while it is cooled below 30℃. Gel-
atin is widely versatile polymers in bio-printing because of its 
thermal-sensitive property (72). But it could not be used with-
out other polymers because it undergoes a reversible reaction 
and also has difficult to optimize the temperature or viscosity 
of gelatin solution during bio-printing (72). Yan et al. have print-
ed 3D structure using gelatin/chitosan hydrogel containing he-
patocytes and cultured for 6 days (73) and then, the following 
research is used cell-laden gelatin hydrogel and printed using 
extrusion method. The structures are consisted of 30 layers. He-
patocytes are remained alive for more than 2 months and per-
formed biological function in the structure (74).

Alginate 
Alginate is polysaccharides derived from seaweeds which are 

found in many places all over the world (75). Dissolved alginate 
in the aqueous solution forms hydrocolloid. Hydrocolloid formed 
alginate is good dressing for wounds (76). For example, the al-
ginate extracted from brown algae applied as alginate applied 
as material of wound dressing (77). Alginate is similar to natu-
ral extracellular (ECM) structurally and it has good biocompat-
ibility (75). However, alginate hydrogel avoid to cell adhesion 
because it does not have cell adhesive site therefore it should be 
added to like RGD as cell-binding molecules (78). In addition, 

the mechanical stiffness is gradually lost and the printed 3D 
structure degraded in the end due to continuous crosslinked 
ions within the media (79). As shown in the following structur-
al formula, alginate consisted of a mixture of b-D-mannuronic 
acid (M) anda-L-guluronic acid residues (G) (80). To overcome 
this disadvantage, the ratio of M to G is needed to control. The 
ratios of G for M is higher, alginate hydrogel becomes more stiff 
gel (81). Dong-Woo Cho et al. printed three-dimensional PCL-
alginate-chondrocytes scaffolds using layer by layer deposition 
printing for cartilage tissue engineering. Encapsulated chon-
drocytes were found to high cell viability (~85%) and frame was 
degraded 4 weeks after implementation (82). 

Chitosan 
Chitosan is a linear polysaccharide obtained from chitin and 

usually contained in squid bones or shells of crustacean (84) It 
is potential materials of hydrogels for long-term drug delivery 
and wound dressing (85). Chitosan is dissolved in acidic condi-
tions as a pH of 5 or less (86) and the chitosan hydrogel can be 
gelled when the pH value increased (87) Ozan akkus et al. print-
ed 3D scaffold with chitosan-PEGDA hybrid gel using stero-
lithography and chitosan and PEGDA compositions were var-
ied with three conditions (Chitosan: PEGDA=1:5, 1:10, 1:15). 
Human mesenchymal stem cells (hMSCs) were observed high 

Fig. 2. Schematic crosslinking of the alginates and calcium cations in egg-box model (83). 

(G) guluronate (M) mannuronate
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cell viability about 90% in three conditions (88).

Hyaluronic acid 
Hyaluronic acid is called as hyaluronan or hyaluronate and it 

is composed of D-glucuronic acid and N-acetyl-glucosamine 
units linear polysaccharide that is promising polymer materi-

als derived naturally as bio-inks (89). Hyaluronic acid is prom-
ising polymer as bio-ink for 3D bio-printing because its sustainly 
biodegradable, biocompatibility and non-immunogenic prop-
erties (90). However, Hyaluronic acid is not stable construct be-
cause of its high water solubility (91). Robert L. Mauck et al. have 
printed 3D structure using Hyaluronic acid gel containing mes-
enchymal stem cells (MSCs) and cultured for 12 weeks (92).

 
Fibrin 

Fibrin is one of the ECM components and it is promising poly-
mer for bio-printing (94). Fibrin is usually used as glue and it is 
spontaneously gelled by the reaction of fibrinogen and thrombin 
(95). Embedded cells are well spreads out and adhere to proper 
sites in the printed structure due to its abundant cell adhesive 
cites (96). Skardal A et al. have printed cell-laden fibrin/collagen 
hydrogel containing amniotic fluid-derived stem (AFS) and 
bone marrow-derived MSCs onto skin wounds cultured for 14 
days (97).

Agarose
Agarose is polysaccharide extracted from seaweeds. Agarose 

is non-degradable natural polymer in human’s body and it is not 
fit for mammalian cell types and it has poor printability due to 
agarose is derived from plant. The gelation of the agarose is oc-
curred when the temperature of the dissolved agarose is cool-
ing down to room temperature. The advantage of agarose is 

Fig. 3. Chemical structure of hyaluronic acid (93).

Table 2. Cross-linking methods and time of the materials of hydrogels commonly used for 3D bio-printing (105)

Material of hydrogel Cross-linking method Cross-linking time

Collagen Hydrophobic bonding 0.5-60 min
Gelatin Temperature Minutes to hours
Gelatin Glutaraldehyde Hours
Alginate CaCl2 Seconds
Chitosan pH (Basic) 5-50min
Hyaluronic acid Thiol group cross-link 15-30min
Hyaluronic acid UV light Seconds
Fibrin Thrombin Seconds
PEG UV light Minutes
PEGDA UV light Minutes
PEGMA UV light Minutes
PEGDMA UV light Minutes
GPT Hydrogen peroxide Seconds

Poly (ethylene glycol) Poly (ethylene glycol) dimethacrylatePoly (ethylene glycol) diacrylate

Fig. 4. Chemical structure of agarose (99).

Agarose
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thermal-sensitive property so cross-linking agents are not nec-
essary to add. Daniela, F. Duarte Campos et al. have printed 
using agarose hydrogel with Human mesenchymal stem cells 
and MG-63 cells and cultured for 21 days (98).

 
Gelatin methacrylate (GelMA)

Gelatin methacrylate is versatile polymers for various tissue 
engineering applications and also has tunable and biocompati-
ble properties. It is a photopolymerizable hydrogel. This is syn-
thesized using gelatin and methacrylic anhydride (MA) and 
solidified under UV irradiation (100). GelMA has property that 
is similar to extracellular matrix (ECM) and it also has some 
peptides useful for cell adhesion and proliferation (101). Re-
cently, GelMA hydrogels are used in biomedical applications 
to fabricate bones, cartilages, and vascular tissues. GelMa have 

long term cell viability and 3D cell binding, and migration prop-
erties. Luiz et al. printed directly with cell-laden GelMa and cul-
tured for 8 days (102).

Gelatin-PEG-Tyramine (GPT) 
Gelatin-PEG-Tyramine hydrogels are rapidly formed, which 

are cross-linkable in situ via enzyme-mediated reaction using 
horseradish peroxidase (HRP), and hydrogen peroxides (H2O2). 
The gelatin and PEG are widely known to have biocompatible 
and biodegradable properties. It has relatively strong mechani-
cal strength, but, Chemical crosslink agent like hydrogen per-
oxide is necessary component for hydrogel gelation process 
and crosslink agent affects to cell viability.

Table 3. Materials of cell-laden hydrogels (Bio-inks), printing technology, and types of cells in 3D bio-printing

Bio-ink materials Printing technology Cell encapsulation Ref.

Collagen

Laser-assisted NIH3T3 fibroblasts and HaCaT keratinocytes (22, 106)

Inkjet C3H/10T1/2 cells (107)

Inkjet HFF-1 fibroblasts and HaCaT keratinocytes (108)

Inkjet rabbit articular chondrocytes (63)

Extrusion Bovine aortic endothelial cells (BAECs) (109)

Gelatin/Alginate/Collagen Extrusion Human corneal epithelial cells (HCECs) (110)

Gelatin Extrusion Hepatocytes (74)

Gelatin/Chitosan Extrusion Hepatocytes (73)

Gelatin/Alginate Extrusion Aortic root sinus smooth muscle cells (SMC) and aortic valve
leaflet interstitial cells (VIC)

(111)

Gelatin/Alginate Extrusion Hepatocytes (112)

Alginate
Laser-assisted MG63 cells (113)

Laser-assisted Rabbit carcinoma cells (B16) and Human umbilical vein 
endothelial cells (Eahy926)

(114)

Alginate/PVA/HA Inkjet HeLa cells (115)

Alginate/Collagen Inkjet Human amniotic fluid-derived stem cells (hAFSCs), canine smooth 
muscle cells (dSMCs), and bovine aorticendothelial cells (bECs)

(116)

Alginate
Extrusion Human fetal cardiomyocyte progenitor cells (hCMPCs) (117)

Extrusion Stromal vascular fraction cells (SVFs) (118)

Alginate Extrusion Cartilage progenitor cells (CPCs) (119)

Alginate/nano-HA Laser-assisted Human endothelial cells (Eahy926) (120)

Fibrinogen/Alginate/Gelatin Extrusion Adipose-derived stromal (ADS) (121)

Hyaluronic acid/GelMA Extrusion Chondrocytes (122)

Chitosan/Gelatin Extrusion Hepatocytes (73)

Agarose
Extrusion Human mesenchymal stem cells and MG-63 cells (123)

Extrusion Bone marrow stromal cells (BMSCs) (124)

Agarose/Collagen Inkjet human umbilical artery smooth muscle cells (HUASMCs) (125)

PEGDA/Alginate Extrusion Porcine aortic valve interstitial cells (PAVIC) (126)

PEGDA/Chitosan SLA Human mesenchymal stem cells (hMSCs) (88)

PEGDMA Inkjet Human chondrocytes (127)

GelMA/PEGDA Extrusion human aortic valve interstitial cells (HAVIC) and human aortic 
valve sinus smooth muscle cells (HASSMC)

(128)

Matrigel Laser-assisted HUVECs (129)
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Synthetic bioinks

Poly (ethylene glycol) (PEG) 
PEG has property of absorbing water. The solubility of PEG 

is fits for cell capsulation but, PEG is not strong to fabricate cell-
laden 3D structure. Thus, PEG has to undergoes chemically 
modification process due to modified PEG is enable to form 
chemical networks. The PEG is approved polymer for human 
clinical applications because it is biocompatible and bioactive 
material and can form various synthetic polymers. When the 
PEGs are exposed to the light like UV, free radicals are produced 
by photo-initiators. The double carbon bonds of the PEGs are 
reactivated by free radicals and they also can produce PEGDA, 
PEGMA, and PEGDMA polymers. These three hydrogels of 
the polymers are all formed hydrogels that undergoes photo-
polymerization process. There are many derivations of poly 
(ethylene glycol) such as PEGDA, PEGMA, and PEGDMA. Di-
acrylated PEG (PEGDA) is often slowly degradable polymers in 
vitro and in vivo studies. It is synthesized under the mild condi-
tions. The formed esters of the PEGDA are not stable during 
acrylates of the PEGs. And this process is caused by poor biode-
gradability (103). PEGMA means methacrylated PEG. It is un-
dergoes radical polymerization using the light such as UV. The 
gelation of PEGMA hydrogel occurs due to its alkene bond in-
teractions in the one side of its PEG (104).

PEGDMA is abbreviation for dimethacrylated PEGs. The 
gelation of the PEGDMA is conducted by photo-initiators. The 
gelation of the PEGDMA polymer solution because of the pres-
ence of the alkene bonds in the PEGDMA (104).

Summary of bio-inks with cells

In bio-printing, the major goal is lager sized-structure with 
complex and functional architectures. In order to produce three 
dimensional structures, suitable bio-inks with chemical and 
physical properties are need (4). To date, researchers are used to 
naturally derived polymers such as collagen, gelatin and fibrin 
or synthetic derived polymers such as GelMA, PEGDA, PEG-
DMA, and Gelatin-poly (ethylene glycol)-Tyramine. Recently, 
natural-polymer combined other natural polymer or synthetic 
polymer. The lack of bio-ink materials for producing larger sized-
structure is currently problems need to be solved.

Conclusion

Cell-laden hydrogels (bio-inks) are used for the fabrication of 
three-dimensional structure using bio-printing technique. This 
technique is advanced technique that can deposit cell-laden 

hydrogel in constant volume to fabricate the 3D structure. The 
hydrogel are important component in bio-printing technique 
and hydrogels are derived from natural ECM components or 
synthesis of polymers. Hydrogels are needed several character-
istics such as biocompatible and biodegradable. Many groups at-
tempt to find ideal hydrogels that have beneficial properties for 
embedded cells.
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