Abstract
This paper proposes a robust vehicle detecting method by using Adaboost and CLAHE(Contrast-Limit Adaptive Histogram Equalization). We propose two method to detect vehicle effectively. First, we are able to judge rainy and night by converting RGB value to brightness. Second, we can detect a taillight, designate a ROI(Region Of Interest) by using CLAHE. And then, we choose an Adaboost algorithm by comparing traditional vehicle detecting method such as GMM(Gaussian Mixture Model), Optical flow and Adaboost. In this paper, we use proposed method and get better performance of detecting vehicle. The precision and recall score of proposed method are 0.85 and 0.87. That scores are better than GMM and optical flow.
본 논문에서는 영상의 대비효과를 부각시키는 CLAHE(Contrast-Limit Adaptive Histogram Equalization)를 적용한 Adaboost 기반 방법을 통해 우천 상황에서 강인한 차량 검출 방법을 제안한다. 본 논문에서는 차량 검출의 효과적인 실시간 동작을 위해 2가지를 제안하였다. 먼저 영상의 RGB값을 통해 우천 상황 여부를 판단하여 검출 방법을 선택할 수 있도록 하여 연산량을 줄이는 것과 CLAHE를 이용한 영상 처리를 통해 영상 내에 차량의 후미등을 검출하여 관심영역을 지정해주는 방법을 제안했다. 또한 본 논문에서는 기존에 차량 검출 방법으로 제시되었던 가우시안 혼합 모델(Gaussian Mixture Model), 옵티컬 플로우(Optical Flow)와 Adaboost(Adaptive boosting)의 우천 상황에서의 차량 검출율을 비교하여 최종적으로 Adaboost를 선택한 이유를 설명했다. 본 논문 실험 결과는 CLAHE 미적용 시 정확율과 재현율은 각각 0.83, 0.77 이었고, CLAHE 적용 시 0.85, 0.87로 적용했을 때 정확율과 재현율에서 약 2%, 13% 향상되었다.