DOI QR코드

DOI QR Code

Model for the Connection-Time of Vehicle-to-Mobile RSU (V2MR) Communications Near a Bus Station

버스 정류소 주변에서 자동차-이동기지국 (V2MR) 통신의 연결시간에 대한 성능분석모형

  • Jeong, Han-You (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Purnaningtyas, Magdalena Trie (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Nguyen, Hoa-Hung (Department of Electrical and Computer Engineering, Pusan National University)
  • Received : 2016.10.14
  • Accepted : 2016.11.18
  • Published : 2016.12.31

Abstract

We study the connection time of vehicle-to-mobile roadside unit (V2MR) communications which can reduce the significant cost of the fixed RSU by installing a gateway of mobile network into a transit bus called the mobile RSU. In the V2MR communications, the connectivity of a commute vehicle can be improved via ad-hoc connection to a nearby mobile RSU. In this paper, we present a new analysis model to estimate the connection time between a commute vehicle and a mobile RSU, when there is a bus station in the overlapping route. Since the connection time between two vehicles is highly dynamic and unpredictable, our analysis will provide a fundamental basis of connection-time estimation of V2MR communications. Numerical results obtained from VEINS simulation show that our analysis can estimate the connection time of V2MR communications with the average error below 1.0 percent. Moreover, we show that the average connection time of V2MR communications can be extended to approximately 3.85 times of that of V2R communications.

자동차 통신망의 구축비용을 획기적으로 절감하기 위해 자동차 통신망과 이동통신망을 연결하는 기지국을 대중교통수단인 버스에 설치한 자동차-이동기지국 (Vehicle-to-Mobile Roadside Unit, V2MR) 통신에 대해 연구한다. 자동차-이동기지국 통신에서 자동차들은 이동기지국에 애드 혹 연결을 설정하여 연결성을 크게 향상한다. 본 논문에서는 동일한 경로를 주행하는 자동차들과 이동기지국 간의 통신연결 시간에 대한 새로운 분석모형을 제시한다. 자동차 통신망에서 연결시간은 매우 동적이고 예측하기 힘들기 때문에, 본 논문에서 제안하는 분석모형은 자동차-이동기지국 간의 통신연결 시간을 예측하기 위한 토대를 제공할 수 있다. VEINS 시뮬에이션을 통해 수집한 실험결과를 통해 제안하는 성능분석모형이 V2MR 통신연결시간 추정 오차를 약 1 퍼센트 이내로 줄일 수 있음을 보인다. 또한, V2MR 통신이 V2R 통신에 비해 통신연결 시간을 약 3.85배 증가시킬 수 있음을 보인다.

Keywords

References

  1. C. Sommer and F. Dressler, Vehicular networking, Cambridge University Press, 2015.
  2. R. Daher and A. Vinel, Roadside networks for vehicular communications, Information Sci. Reference, 2013.
  3. H.-Y. Jeong, T. A. Suramardhana, and H.-H. Nguyen, "Design and implementation of green light optimal speed advisory based on reference mobility models (GLOSA-RMM) in cyber-physical intersection systems (CPIS)," J. KICS, vol. 39B, no. 8, pp. 544-554, Aug. 2014. https://doi.org/10.7840/kics.2014.39B.8.544
  4. H.-Y. Jeong, T. A. Suramardhana, and H.-H. Nguyen, "Connectivity management of pedestrian smartphone app in the cyberphysical intersection systems (CPIS)," J. KICS, vol. 39B, no. 9, pp. 578-589, Sept. 2014. https://doi.org/10.7840/kics.2014.39B.9.578
  5. IEEE 802.11 Working Group, IEEE standard for information technology - Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements, Part 11: Wireless LAN medium access control (MAC) and physical Layer (PHY) specifications, Amendment 6: Wireless access in vehicular environments, IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007), Jul. 15 2010.
  6. J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, "MaxProp: Routing for vehicle-based disruption-tolerant networks," in Proc. IEEE INFOCOM, pp. 1-11, 2006.
  7. V. Naumov and T. R. Gross, "Connectivityaware routing (CAR) in vehicular ad hoc networks," in Proc. IEEE INFOCOM, pp. 1919-1927, 2007.
  8. K. C. Lee, U. Lee, and M. Gerla, "Geoopportunistic routing for vehicular networks," IEEE Commun. Mag., vol. 48, no. 5, pp. 164-170, 2010.
  9. A. Balasubramanian, Y. Zhou, W. B. Croft, B. N. Levine, and A. Venkataramani, "Web search from a bus," in Proc. ACM CHANTS, pp. 59-66, Sept. 2007.
  10. V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and S. Madden, "A measurement study of vehicular internet access using in situ Wi-Fi networks," in Proc. ACM MOBICOM, pp. 50-61, Sept. 2006.
  11. S. Yousefi, E. Altman, R. El-Azouzi, and M. Fathy, "Analytical model for connectivity in vehicular ad hoc networks," IEEE Trans. Veh. Technol., vol. 57, no. 6, Nov. 2008.
  12. C. Sommer, Vehicles in Network Simulation (VEINS), online available: http://veins.car2x.org
  13. Institute of Transportation Systems, SUMO - Simulation of Urban MObility, online available: http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931$\_$read-41000/
  14. H.-K. Choi, H.-S. Oh, W. Cho, and Y.-S. Jang, "Fading effects and antenna diversity tests of WAVE communications," J. KICS, vol. 39C, no. 10, pp. 967-973, Oct. 2014. https://doi.org/10.7840/kics.2014.39C.10.967
  15. Wikipedia Two-ray ground-reflection model, online available: https://en.wikipedia.org/wiki/Two-ray_ground-reflection_model

Cited by

  1. Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning vol.18, pp.4, 2018, https://doi.org/10.3390/s18041092