DOI QR코드

DOI QR Code

분산 모바일 코어기반 5G 네트워크에서의 Service Function Chaining 적용구조

Service Function Chaining Architecture for Distributed 5G Mobile Core Networks

  • Sun, Kyoungjae (Soongsil University Department of Information Communication, Materials, and Chemistry Convergence Technology) ;
  • Kim, Younghan (Soongsil University Department of electronic engineering)
  • 투고 : 2016.08.31
  • 심사 : 2016.12.19
  • 발행 : 2016.12.31

초록

본 논문은 5G 모바일 네트워크에서 가상화 기반의 이동통신 코어망인 Virtualized Evolved Packet Core(vEPC) 환경을 고려하여, 가입자의 종류 및 트래픽 식별에 따라 동적으로 End-to-end 서비스를 제공하기 위한 기술인 Service Function Chaining(SFC)을 적용하기 위한 구조 및 메시지 절차를 제안한다. SFC 기술은 네트워크 기능들을 물리적인 연결에 상관없이 선택적으로 제공하기 위한 기술로써, 가상화 기반 네트워크 기술인 Network Function Virtualization(NFV)기반의 네트워크 환경에서 서비스 제공을 위한 주요 기술로 예상된다. 특히, 5G 모바일 코어 네트워크는 분산 코어 형태로 구축될 것으로 예상되기 때문에 본 논문에서는 이를 고려하여 계층적 SFC(hSFC: Hierarchical SFC) 구조를 적용하였다. 본 논문에서는 제안하는 구조 및 구조 내에서의 SFC를 이용한 경로 설정 메시지 절차를 정의하고 오픈소스 기반의 테스트베드 설계를 통해 이를 구현하고자 하였다.

In this paper, considering virtualized Evolved Packet Core(vEPC) network for 5G mobile network, we propose architecture for supporting Service Function Chaining(SFC) in 5G mobile network. Using SFC in 5G network, dynamic path configuration and providing network services based on subscriber and traffic information. SFC technology provides logical ordered set of network functions and delivers packet through providing logical path over the physical network. Based on the perspective of 5G core network in distributed manner, we design hierarchical SFC architecture to manage SFC for global path including vEPC and SGi-LAN network, and internal path between virtualized network functions in each cloud. In this paper, we define architecture and call flow for establishing data path using SFC. Finally, we design testbed architecture for real implementation based on open source software.

키워드

참고문헌

  1. 3GPP TS 29.274, Evolved General Packet Core Radio Service(GPRS) Tunneling Protocol for Control plane (GTPv2-C), Sep. 2011.
  2. P. Kostas, Y. Wang, and W. Hu, "Mobileflow: toward software-defined mobile networks," IEEE Comm. Mag., vol. 51, no. 7, pp. 44- 53, Jul. 2013. https://doi.org/10.1109/MCOM.2013.6553677
  3. G. Lee, I. Jang, W. Kim, S. Joo, M. Kim, S. Pack, and C. Kang, "SDN-based middlebox management framework in integrated wired and wireless networks," J. KICS, vol. 39, no. 6, pp. 379-386, Jun. 2014.
  4. A. Basta, W. Kellerer, M. Hoffman, H. J. Morper, and K. Hoffman, "Applying NFV and SDC to LTE mobile core gateways: The finctions placement problem," ACM AllThingsCellular, Chicago, USA, pp. 33-38, Aug. 2014.
  5. A. Basta, A. Blenk, W. Kellerer, M. Hoffman, H, J, Morper and K. Hoffman, "SDN and NFV dynamic operation of LTE EPC gateways for time-varing traffic patterns," MONAMI, Springer Int. Publishing, pp. 63-76, 2015.
  6. J. Heinonen, T. Partti, M. Kallio, M. Lappanlainen, H. Flink, and J. Hillo, "Dynamic tunnel switching for SDN-based cellular core networks," ACM AllThingsCellular, Chicago, USA, pp. 27-32, Aug. 2014.
  7. R. Guerzoni, R. Trivisonno, and D. Soldani, "SDN-based architecture and procedures for 5G networks," 1st IEEE Int. Conf. 5G for Ubiquitous Connectivity(5GU), Levi, Finland, pp. 209-214, Feb. 2014.
  8. R. Trivisonno, R. Guerzoni, I. Vaishnavi, and D. Soldani, "SDN-based 5G networks: architecture, functions, procedures and backward compatibility," Trans. Emerging Telecommun. Technol., vol. 26, no. 1, pp. 82-92, Dec. 2014.
  9. S. Shanmugalingnam and P. Bertin, "Programmable mobile core network," ISCC, Madeira, Portugal, pp. 1-7, Jun. 2014.
  10. T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis, and T. Magedanz, "EASE: EPC as a service to ease mobile core network deployment over cloud," IEEE Network, vol. 29, no. 2, pp. 78-88, Mar. 2015. https://doi.org/10.1109/MNET.2015.7064907
  11. I. Cho and S. Kang, "VIMS: Design and implementation of virtual network integrated control and management framework over national research network," J. KICS, vol. 37, no. 10, pp. 877-888, Oct. 2012.
  12. V. G. Nguyen, T. X. Do, and Y. Kim, "SDN and virtualization-based LTE mobile network architectures: A comprehensive survey," Wireless Pers. Commun., vol. 86, no. 3, pp. 1401-1438, Aug. 2015.
  13. J. Halpem and C. Pignataro, Service Function Chaining (SFC) Architecture, RFC 7665, IETF, Oct. 2015.
  14. P. Quinn and U. Elzur, Network Service Header, IETF Internet-Draft, draft-ietf-sfcnsh-07, Aug. 2016.
  15. D. Dolson, S. Homma, D. Lopez, M. Boucadair, D. Liu, T. Ao, and V. Vu, Hierarchical service function chaining (hSFC), IETF Internet- Draft, draft-ietf-sfc-hierarchical-00, Jul. 2016.
  16. W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro, Service function chaining use cases in mobile networks, IETF Internet-Draft, draft-ietf-sfc- use-case-mobility-06, Apr. 2016.
  17. 3GPP TR 23.799, Study on Architecture for Next Generation System, v. 1.0.2, Sept. 2016.
  18. P. Gurusanthosh, A. Rostami, and R. Manivasakan, "SDMA: A semi-distributed mobility anchoring in LTE networks," 2013 Int. Conf. MoWNeT, Montreal, Canada, pp. 133-139, Aug. 2013.
  19. O. Sefraoui, M. Aissaoui, and M. Eleuldj, "OpenStack: toward an open-source solution for cloud computing," Int. J. Computer Appl., vol. 55, no. 3, 2012.
  20. Open vswitch, from http://www.openvswitch.org
  21. J. Medved, R. Varga, A. Tkacik, and K. Gray, "Opendaylight: Towards a model-driven sdn controller architecture," in Proc. IEEE Int. Symp. World of Wireless, Mob. and Multimedia Netw., Sydney, Austrailia, June 2014.
  22. M. Kim, G. Lee, S. Choo, S. Pack, and Y. Kim, "Optimal flow distribution algorithm for efficient service function chaining," J. KICS, vol. 40, no. 6, pp. 1032-1039, Jun. 2016.

피인용 문헌

  1. A Study on the Issues and Perceptions of 5G Industry in Digital Transformation Era: Focused on News Network Analysis vol.17, pp.11, 2016, https://doi.org/10.14801/jkiit.2019.17.11.9