DOI QR코드

DOI QR Code

Portable and Extensible ARINC 653 for Drones

드론을 위한 이식성과 확장성을 지원하는 ARINC 653

  • Received : 2016.08.10
  • Accepted : 2016.12.13
  • Published : 2016.12.31

Abstract

With the various usage of civil drones, such as hobby, filmmaking and surveillance, the need for technology that safely reconstructs software for target application domains has been increasingly rising. In order to support a reliable software integration of avionic systems, the ARINC 653 standard has been proposed and adapted mainly on manned aircrafts. Therefore, applying ARINC 653 on civil drones could be desirable. Though, various researches on implementing ARINC 653 has been conducted, there are still additional requirements to apply ARINC 653 to civil drones that use various platforms and have a wide range of use. In this paper, taking account of these requirements, we implement a portable and extensible ARINC 653 and analyze its performance. We offer the portability with the OS abstraction layer that reduces dependency on a specific operating system, and provide the design that can extend internal functions, such as partition scheduler and process scheduler.

민간 드론의 활용범위가 취미, 영화촬영, 시설감시 등과 같이 다양해짐에 따라서 응용 분야의 요구사항에 맞게 소프트웨어를 안정적으로 재구성할 수 있는 기술에 대한 요구가 높아지고 있다. 항공전자 시스템의 소프트웨어 통합을 안정적으로 제공하기 위해서 ARINC 653 표준이 제안되어 현재 유인 항공기를 중심으로 적용되고 있다. 따라서 ARINC 653을 민간 드론에도 활용하는 것을 고려할 수 있다. 하지만 지금까지 ARINC 653을 구현하기 위한 다양한 연구가 진행되었으나, 다양한 플랫폼을 사용하고 응용 분야가 넓은 민간 드론에 적용되기 위해서는 추가로 고려되어야 하는 요구사항들이 존재한다. 본 논문에서는 이러한 사항들을 고려해서 이식성과 확장성이 높은 ARINC 653을 구현하고 그 성능을 분석한다. 이식성을 위해 OS 추상화 계층을 제공하여 운영체제에 대한 의존성을 낮추고 파티션 스케줄러 등의 기능을 확장할 수 있는 구조를 제공한다.

Keywords

References

  1. Windriver, Retrieved August 8. from http://www.windriver.com.
  2. GreenHils safety critical product: INTEGRITY-178B RTOS, Retrieved August 8. from http://www.ghs.com/products/safety_critical/integrity-do-178b.html.
  3. LynuxWorks, Retrieved Aug., 8. form http://lynuxworks.com/rtos/rtos-178.php.
  4. H.-J. Park, K.-C. Go, and J.-H. Kim. "Design method for integrated modular avionics system architecture," J. KICS, vol. 39, no. 11, pp. 1094-1103, 2014.
  5. P. Edgar, J. Rufino, T. Schoofs, and J. Windsor, "Amoba ARINC 653 simulator for modular based space applications," Eurospace DASIA, Oct. 2008.
  6. T. Schoofs, S. Santos, C. Tatibana, and J. Anjos, "An integrated modular avionics development environment," in Proc. IEEE/AIAA DASC, Oct. 2009.
  7. A. Dubey, G. Karsai, and N. Mahadevan, "A component model for hard real-time systems: CCM with ARINC-653," Software: Practice and Experience, vol. 41, no. 12, pp. 1517-1550, 2011. https://doi.org/10.1002/spe.1083
  8. Aeronautical Radio Inc., Avionics Application Software Standard Interface(Part 1): Require Services, ARINC Specification 653P1-2, Dec. 2005.
  9. S. H. VanderLeest, "ARINC 653 hypervisor," in Proc. IEEE/AIAA DASC, Oct. 2012.
  10. M. Masmano, I. Ripoll, A. Crespo, and J. Metge, "XtratuM: A hypervisor for safety critical embedded systems," Real-Time Linux Workshop, Sept. 2009.
  11. S. Han and H.-W. Jin, "Resource partitioning for integrated modular avionics: comparative study of implementation alternatives," Software: Practice and Experience, vol. 44, no. 12, pp. 1441-1466, Dec. 2014. https://doi.org/10.1002/spe.2210
  12. H.-W. Jin, S.-H. Lee, S. Han, H.-C. Jo, and D. Kim, "WiP abstract: challenges and strategies for exploiting integrated modular avionics on unmanned aerial vehicles," in Proc. ACM/IEEE ICCPS, Apr. 2012.
  13. H.-C. Jo, K. Park, D. Jeon, H.-W. Jin, and D.-H. Kim, "Integrated system of multiple real-time mission software for small unmanned aerial vehicles," Telecommun. Rev., vol. 24, no. 4, pp. 468-480, Aug. 2014.
  14. H.-C. Jo, S. Han, S.-H. Lee, and H.-W. Jin, "Implementing control and mission software of UAV by exploiting open source softwarebased ARINC-653," in Proc. IEEE/AIAA DASC, Oct. 2012.
  15. H. Shi, H. Park, H.-H. Kim, and K.-H. Park, "Vision-based trajectory tracking control system for a quadrotor-type UAV in indoor environment," J. KICS, vol. 39, no. 1, pp. 47-59, 2014.
  16. W.-M. Park, J.-H. Choi, S.-G. Choi, N.-D. Hwang, and H.-C. Kim, "Real-time shooting area analysis algorithm of UAV considering three-dimensional topography," J. KICS, vol. 38, no. 12, pp. 1196-1206, 2013.
  17. APM(ArduPilot Mega), Retrieved August 8. from http://ardupilot.org.

Cited by

  1. 드론 비행제어 프로그램을 위한 계층적 ARINC 653의 파티션 내 통신 구현 vol.44, pp.7, 2016, https://doi.org/10.5626/jok.2017.44.7.649