DOI QR코드

DOI QR Code

Aeronautical to Ground Channel Modeling for Common Data Link

공용데이터링크를 위한 공대지 채널 모델링

  • Park, Hongseok (Yonsei University, School of Electrical and Electronic Engineering) ;
  • Shim, Jae-Nam (Yonsei University, School of Electrical and Electronic Engineering) ;
  • Kim, Donghyun (Agency for Defense Developent, The 2nd R&D Institute) ;
  • Kim, Dong Ku (Yonsei University, School of Electrical and Electronic Engineering)
  • Received : 2016.08.31
  • Accepted : 2016.11.15
  • Published : 2016.12.31

Abstract

The new channel model for high data rate common data link(CDL) is proposed. The Two-ray channel, which is composed of the reflected signals on the front ground of the receiver, is considered in this paper. This channel arises due to the curvature of the earth when the altitude of the transmitter is tens of kilometers and distance between the transmitter and the receiver is hundreds of kilometers. The Two-ray channel is modeled by estimating the maximum delay profile and the power delay profile, depending on the transmitting and receiving beamforming angle and the radiation pattern of antenna. The power delay profile has a larger effect on the bit error rate(BER) over signal to noise ratio(SNR) than the maximum delay profile, because the distance range is too long in the proposed channel model.

본 논문에서는 고속의 공용데이터링크(common data link, CDL)를 위한 새로운 채널 모델을 제안한다. 송신기의 고도가 수km ~ 수십km이고 통달거리가 수백km인 경우 지구 곡률에 의해 송신신호가 수신기의 앞 쪽에서 지면에 반사되어 들어오는 Two-ray 채널이 발생할 가능성이 크다. 송수신기의 빔포밍(beamforming) 각도와 안테나 방사 패턴(radiation pattern)에 따라 반사 경로로 들어오는 신호의 최대 지연 시간(maximum delay)과 전력 지연 프로파일(power delay profile)을 추정하여 Two-ray 채널을 모델링한다. 제안하는 채널 모델에서는 통달거리가 길기 때문에 전력 지연 프로파일이 최대 지연 시간보다 신호 대 잡음비(signal to noise ratio, SNR)에 대한 비트 오류율(bit error rate, BER)에 더 큰 영향을 미친다.

Keywords

References

  1. J.-S. Kang, The Transition Period, Korea's Security Strategy and Defense Reform for the Implementation of National Value," Pyongdan Munhwasa, 2005. ("전환기, 국가가치 구현을 위한 한국의 안보전략과 국방개혁," 평단문화사)
  2. J.-M. Chung, K.-C. Park, T.-Y. Won, U.-H. Oh, D.-C. Ko, S.-J. Hong, C.-B. Yoon, H. Kim, and U.-Y. Pak, "Standardization strategy for the image and intelligence common datalink," J. Korean Inf. Commun. Mag., vol. 28, no. 4, pp. 41-50, Apr. 2011.
  3. Y.-j. Ryu, J.-h. Ryu, and U.-y. Pak, "Aeronautical link availability analysis for the multi-platform image & intelligence common data link," J. KICS, vol. 37C, no. 10, pp. 965-976, Oct. 2012. https://doi.org/10.7840/kics.2012.37C.10.965
  4. M. Nakagami, "The m-Distribution-A general formula of intensity distribution of rapid fading," in Statistical Methods of Radio Wave Propag., W.C. Hoffman (ed.), pp. 3-36, Pergamon Press, 1960.
  5. H. Suzuki, "A statistical model for urban radio propagation," IEEE Trans. Commun., vol. COM-25, no. 7, pp. 673-680, Jul. 1977.
  6. A. Aragon-Zavala, J. L. Cuevas-Ruiz, and J. A. Delgado-Penin, High-Altitude Platforms for Wireless Communications, Wiley, 2008.
  7. T. C. Tozer and D. Grace, "High-altitude platforms for wireless communications," Elec..& Commun. Eng. J., vol. 13, no. 3, pp. 127-137, Jun. 2001. https://doi.org/10.1049/ecej:20010303
  8. J.-M. Park and D.-S. An, "HAPS-related ITU-R Research and International R & D Trend", J. IEIE, vol. 36, no. 1, pp. 31-43, Jan. 2009. ("HAPS관련 ITU-R 연구 및 국제 연구 개발 동향")
  9. Iskandar and S. Shimamoto, "The channel characterization and performance evaluation of mobile communication employing stratospheric platform," IEEE/ACES Int. Conf. Wireless Commun. and Appl. Computat. Electromagnetics, 2005., pp. 821-831, Apr. 2005.
  10. A. Zajic, Mobile-to-Mobile Wireless Channels, Artech House, 2013.
  11. B. Vucetic and J. Du, "Channel modeling and simulation in satellite mobile communication systems," IEEE J. Sel. Areas in Commun., vol. 10, no. 8, pp. 1209-1218, Oct. 1992. https://doi.org/10.1109/49.166746
  12. S. G. Shankar, K. V. Reddy, and K. V. Reddy, "Design and simulation of horn antenna in x-Ku band for satellite communications," Int. J. Res. in Sci. and Technol., vol. 1, no. 10, Nov. 2014.