DOI QR코드

DOI QR Code

윈도우 분할 기반 양방향 필터의 하드웨어 설계

Hardware Design of Bilateral Filter Based on Window Division

  • Hyun, Yongho (Department of Information, Communication, and Electronic Engineering, The Catholic University of Korea) ;
  • Park, Taegeun (Department of Information, Communication, and Electronic Engineering, The Catholic University of Korea)
  • 투고 : 2016.09.05
  • 심사 : 2016.12.13
  • 발행 : 2016.12.31

초록

양방향 필터(bilateral filter)는 필터링 시 주변 화소의 평균을 계산하여 경계 보존과 잡음제거에 장점을 가진다. 본 논문에서는 윈도우 분할 기반 양방향 필터에 대하여 실시간 처리가 가능한 시스템을 설계하였다. 윈도우 내부의 주변 화소를 5분할하고 연속된 중심화소와 공유하는 주변 화소를 동시에 연산하는 파이프라인 스케줄링을 적용한 병렬 처리 기법으로 성능을 개선하였다. 비트 폭에 따른 필터 성능과 하드웨어 자원 소모에 대한 상충관계(tradeoff)를 고려하였으며, 필터링 결과 영상의 PSNR 분석을 통하여 비트를 할당하였고 사용된 지수함수는 16단계의 계단함수 LUT를 적용하였다. 설계한 시스템은 verilogHDL로 설계되었으며, 동부하이텍 110nm 라이브러리를 사용하여 Synopsys를 통해 합성하였고 416MHz의 최대 동작주파수에서 416Mpixels/s(397fps)의 처리량(throughput)과 132K 게이트의 하드웨어 자원을 사용한다.

The bilateral filter can reduce the noise while preserving details computing the filtering output at each pixels as the average of neighboring pixels. In this paper, we propose a real-time system based on window division. Overall performance is increased due to the parallel architectures which computes five rows in the kernel window simultaneously but with pipelined scheduling. We consider the tradeoff between the filter performance and the hardware cost and the bit allocation has been determined by PSNR analysis. The proposed architecture is designed with verilogHDL and synthesized using Dongbu Hitek 110nm standard cell library. The proposed architecture shows 416Mpixels/s (397fps) of throughput at 416MHz of operating frequency with 132K gates.

키워드

참고문헌

  1. C. Tomasi and P. Manduchi, "Bilateral filtering for gray and color images," in Proc. IEEE ICCV, pp. 839-846, 1998.
  2. Q. Yang, "Hardware-efficient bilateral filtering for stereo matching," IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 5, pp. 1026-1032, 2014. https://doi.org/10.1109/TPAMI.2013.186
  3. G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and K. Toyama, "Digital photography with flash and no-flash image pairs," in ACM Trans. Graph., vol. 23, no. 3, pp. 664-672, 2004. https://doi.org/10.1145/1015706.1015777
  4. F. Durand and J. Dorsey, "Fast bilateral filtering for the display of high dynamic range images," in ACM Trans. Graph., vol. 21, no. 3, pp. 257-266, 2002.
  5. L. Dai, M. Yuan, and X. Zhang, "Speeding up the bilateral filter: A joint acceleration way," in IEEE Trans. Image Process., vol. 25, no. 25, pp. 2657-2672, 2016. https://doi.org/10.1109/TIP.2016.2549701
  6. F. Porikli, "Constant time O(1) bilateral filtering," in Proc. IEEE CVPR, pp. 1-8, Jun. 2008.
  7. K. Sugimoto and S. Kamata, "Compressive bilateral filtering," in IEEE Trans. Image Process., vol. 24, no. 11, pp. 3357-3369, 2015. https://doi.org/10.1109/TIP.2015.2442916
  8. Y.-C. Tseng, P.-H. Hsu, and T.-S. Chang, "A 124 Mpixels/sec VLSI design for histogrambased joint bilateral filtering," in IEEE Trans. Image Process., vol. 20, no. 11, pp. 3231-3241, 2011. https://doi.org/10.1109/TIP.2011.2159226
  9. S.-K. Han, "An architecture for high throughput and improved-quality stereo vision processor," M.S. thesis, Univ. Maryland, College Park, MD, 2010.
  10. A. Gabiger, M. Kube, R. Weigel, and R. Rose, "An FPGA-based fully synchronized design of a bilateral filter for real time image denoising," in IEEE Trans. Ind. Elect., vol. 61, no. 8, pp. 4093-4104, 2014. https://doi.org/10.1109/TIE.2013.2284133
  11. T. Q. Vinh, J. H. Park, Y. C. Kim, and S. H. Hong, "FPGA implementation of real-time edge-preserving filter for video noise reduction," in Proc. IEEE ICCEE, pp. 611-614, 2008.
  12. E. Sakthivel, V. Malalthi, M. Arunraja, and G. Perumalvignesh, "NABI: low power, high speed FPGA based novel approach for bilateral filter," Intl. J. Innovation and Scientific Res., vol. 25, no. 2, pp. 646-653, 2016.
  13. K. Pahri, VLSI digital signal processing systems, John Wiley & Sons, 1999.
  14. K. Hwang, Computer arithmetic: principles, architecture, and design, Wiley, 1979.