DOI QR코드

DOI QR Code

완전 차집합군으로부터 설계된 새로운 불규칙 준순환 저밀도 패리티 체크 부호

New Irregular Quasi-Cyclic LDPC Codes Constructed from Perfect Difference Families

  • Park, Hosung (School of Electronics and Computer Engineering, Chonnam National University)
  • 투고 : 2016.10.28
  • 심사 : 2016.12.20
  • 발행 : 2016.12.31

초록

본 논문에서 다양한 블록 크기를 가지는 완전 차집합군을 이용하여 불규칙 준순환 패리티 체크 부호를 생성하는 방법을 제안한다. 제안하는 부호는 기존의 설계방법들에 비해 부호율, 부호 길이, 차수 분포 측면에서 다양한 값들을 가질 수 있다는 장점을 보인다. 또한 랜덤한 방법으로 설계하기 힘든 매우 짧은 길이의 부호를 체계적으로 설계할 수 있다. 모의실험을 통해 제안하는 부호의 오류 정정 성능을 검증한다.

In this paper, we propose a construction method of irregular quasi-cyclic low-density parity-check codes based on perfect difference families with various block sizes. The proposed codes have advantages in that they support various values with respect to code rate, length, and degree distribution. Also, this construction enables very short lengths which are usually difficult to be achieved by a random construction. We verify via simulations the error-correcting performance of the proposed codes.

키워드

참고문헌

  1. C.-U. Baek and J.-W. Jung, "A study on turbo equalization for MIMO systems based on LDPC codes," J. KICS, vol. 41, no. 5, pp. 504-511, May 2016. https://doi.org/10.7840/kics.2016.41.5.504
  2. B. Vasic and O. Milenkovic, "Combinatorial constructions of low-density parity-check codes for iterative decoding," IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1156-1176, Jun. 2004. https://doi.org/10.1109/TIT.2004.828066
  3. S. J. Johnson and S. R. Weller, "A family of irregular LDPC codes with low encoding complexity," IEEE Commun. Lett., vol. 7, no. 2, pp. 79-81, Feb. 2003. https://doi.org/10.1109/LCOMM.2002.808375
  4. T. Xia and B. Xia, "Quasi-cyclic codes from extended difference families," in Proc. IEEE Wireless Commun. Netw. Conf., pp. 1036-1040, New Orleans, LA, USA, Mar. 2005.
  5. X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, "Regular and irregular progressive edgegrowth tanner graphs," IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386-398, Jan. 2005. https://doi.org/10.1109/TIT.2004.839541
  6. D. Wu, M. Cheng, and Z. Chen, "Perfect difference families and related variable-weight optical orthogonal codes," Australian J. Combin., vol. 55, pp. 153-166, 2013.
  7. R. M. Tanner, "Spectral graphs for quasi-cyclic LDPC codes," in Proc. IEEE Symp. Inf. Theory, p. 226, Washington, D.C., USA, Jun. 2001.