DOI QR코드

DOI QR Code

Performance Evaluation Criterion of FTN-Based Transmission System

FTN 기반 전송 시스템의 성능 평가 기준에 관한 연구

  • 곽상운 ;
  • 윤정일 ;
  • 백명선 (한국전자통신연구원 방송?미디어연구소 방송시스템연구부 나노미디어전송연구실) ;
  • 임형수 (한국전자통신연구원 방송?미디어연구소 방송시스템연구부 나노미디어전송연구실)
  • Received : 2016.09.03
  • Accepted : 2016.11.01
  • Published : 2016.11.30

Abstract

FTN(Faster-Than-Nyquist) signaling is a method of transmitting symbols at rates faster than the Nyquist rate in the same bandwidth by overlapping transmission pulses. The transmission power of the FTN signal is greater than that of the Nyquist signal, because the number of symbols in the FTN signal is larger than that in the Nyquist signal for the same time interval. Hence, to evaluate the performance of an FTN-based transmission system properly, the performance evaluation criterion should be carefully set, and conversion formulas among the criteria which are used in Nyquist-based system should also be applied attentively. In this paper, the performance evaluation criteria of the FTN-based transmission system is analyzed and a valid way to set the criteria is proposed.

FTN(Faster-Than-Nyquist) 전송 방식은 송신 펄스를 중첩시켜 동일한 대역폭 내에서 나이퀴스트(Nyquist) 율보다 빠른 속도로 심볼을 전송하는 기법이다. FTN 전송 방식을 적용하면 동일한 시간 구간 동안 나이퀴스트 전송 방식보다 많은 수의 심볼이 존재하게 되므로, 심볼 당 에너지가 같을 때 신호의 송신 전력이 커진다. 따라서 FTN 기반 전송 시스템의 올바른 성능 평가를 위해서는 이 점에 유의하여 성능 평가 기준을 설정하여야 하며, 기존 나이퀴스트 기반 전송 시스템에서 활용되던 성능 평가 기준 간의 환산 공식 또한 주의하여 활용할 필요가 있다. 본 논문에서는 FTN 전송 방식이 적용된 시스템에서의 성능 평가 기준과 관계식에 대해 분석하고 타당한 성능 평가 기준을 제시한다.

Keywords

References

  1. Cisco, Cisco visual networking index: Global mobile data traffic forecast update, 2015-2020, Feb. 2016.
  2. NGMN 5G white paper 1.0, Feb. 2015.
  3. D. Kang, H. Kim, J. Yun, H. Lim, and W. Oh, "Faster than Nyquist transmission with multiple channel codes," J. KICS, vol. 41, no. 22, pp. 157-162, Feb. 2016. https://doi.org/10.7840/kics.2016.41.2.157
  4. M. Irfan, J. Kim, and S. Shin, "Spectral and energy efficient spatially modulated non-orthogonal multiple access (NOMA) for 5G," J. KICS, vol. 40, no. 8, pp. 1507-1514, Aug. 2015. https://doi.org/10.7840/kics.2015.40.8.1507
  5. J. Hong, H. Jo, C. Mun, and J. Yook, "Beamforming based CSI reference signal transmission for FDD massive MIMO systems," J. KICS, vol. 41, no. 5, pp. 520-530, May 2016. https://doi.org/10.7840/kics.2016.41.5.520
  6. J. Chung, Y. Han, and J. Lee, "Adaptive channel estimation techniques for FDD massive MIMO systems," J. KICS, vol. 40, no. 7, pp. 1239-1247, Jul. 2015. https://doi.org/10.7840/kics.2015.40.7.1239
  7. J. E. Mazo, "Faster-than-Nyquist signaling," Bell Syst. Tech. J.,, vol. 54, no. 8, pp. 1451-1462, Oct. 1975. https://doi.org/10.1002/j.1538-7305.1975.tb02043.x
  8. J. B. Anderson, and V. Owall, "Faster-than-Nyquist signaling," in Proc. IEEE, vol. 101, no. 8, pp. 1817-1830, Aug. 2013. https://doi.org/10.1109/JPROC.2012.2233451
  9. M. E. Hefnawy and H. Taoka, "Overview of faster-than-Nyquist for future mobile communication systems," in Proc. IEEE VTC Spring, pp. 1-5, Dresden, Germany, Jun. 2013.
  10. A. D. Liveris and C. N. Georghiades, "Exploiting faster-than-Nyquist signaling," IEEE Trans. Commun., vol. 51, no. 9, pp. 1502.1511, Sept. 2003. https://doi.org/10.1109/TCOMM.2003.816943
  11. J. Yu, J. Park, F. Rusek, B. Kudryashov, and I. Bocharova, "High order modulation in faster-than-Nyquist signaling communication systems," in Proc. IEEE VTC Fall, pp. 1-5, Vancouver, BC, Canada, Sept. 2014.
  12. F. Rusek and J. B. Anderson, "Multistream faster than Nyquist signaling," IEEE Trans. Commun., vol. 57, no. 5, pp. 1329-1340, May 2009. https://doi.org/10.1109/TCOMM.2009.05.070224
  13. F. Rusek and J. B. Anderson, "Constrained capacities for faster-than-Nyquist signaling," IEEE Trans. Inf. Theory, vol. 55, no. 2, pp. 764-775, Feb. 2009. https://doi.org/10.1109/TIT.2008.2009832
  14. Y. Yoo and J. Cho, "Asymptotic optimality of binary faster-than-Nyquist signaling," IEEE Commun. Lett., vol. 14, no. 9, pp. 788-790, Sept. 2010. https://doi.org/10.1109/LCOMM.2010.072910.100499
  15. ETSI EN 302 307 (V1.3.1), Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2), DVB, Mar. 2013.
  16. ETSI EN 302 355 (V1.3.1), Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2), DVB, Apr. 2012.