DOI QR코드

DOI QR Code

기지국 협력 Device-to-Device 통신 전송 프로토콜 연구

Transmission Protocol for Cellular-Aided Device-to-Device Communication

  • Jeon, Sang-Woon (Andong National University, Dept. of Information and Communication Engineering) ;
  • Choi, Sang Won (Korea Railroad Research Institute, ICT Convergence Research Team) ;
  • Kim, Juyeop (Korea Railroad Research Institute, Signaling and Communications Research Team) ;
  • Shin, Won-Yong (Dankook University Dept. of Mobile Systems Engineering)
  • 투고 : 2016.09.30
  • 심사 : 2016.11.23
  • 발행 : 2016.11.30

초록

본 논문은 기지국 협력이 가능한 Device-to-Device 통신 모델에서의 효율적인 전송 프로토콜에 대해 연구하였다. 두 개의 직접통신 송수신단 쌍이 기지국의 상향링크, 하향링크 통신채널을 활용하여 독립적인 메시지를 전송하는 모델에 대해 고려하였다. 제안기법의 경우, 첫 번째 단계에서 송신단은 메시지를 전송하고 기지국과 수신단은 이를 수신하게 된다. 두 번째 단계에서 기지국은 메시지의 XOR를 수신단에게 전송하여 최종적으로 수신단은 첫 번째 단계에서 수신한 신호와 두 번째 단계에서 수신한 신호를 통하여 자신의 메시지를 복원하게 된다. 기존의 직접 통신의 경우, 자신의 메시지 디코팅에 실패하면 아웃티지가 발생하지만, 제안기법의 경우 첫 번째 단계에서 두 메시지 중 하나만 디코딩이 가능하면 두 번째 단계에서 수신한 메시지의 XOR를 통해 자신의 메시지를 복원 가능하다. 본 논문은 제안기법의 아웃티지 기반 전송율을 분석하고 또한 모의실험을 통하여 제안기법이 기존 기법 대비 아웃티지 성능을 향상시킬 수 있음을 보였다.

We study an efficient transmission protocol for the cellular-aided device-to-device communication model. In particular, two source-destination pairs communicate with the help of unlink and downlink cellular links. For the proposed scheme, two transmitters send their messages and the base station and two receivers receive at the first phase. Then, at the second phase, the base station sends the XOR of the messages to two receivers and they try to decode their own messages from the received signals after the first and second phases. We analyze the outage-based throughput achievable by the proposed scheme and demonstrate by simulations that the proposed scheme provides an improved outage performance compared to the conventional device-to-device communication schemes.

키워드

참고문헌

  1. V. R. Cadambe and S. A. Jafar, "Interference alignment and degrees of freedom of the K-user interference channel," IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425-3441, Aug. 2008. https://doi.org/10.1109/TIT.2008.926344
  2. D. Astely, E. Dahlman, G. Fodor, S. Parkvall, and J. Sachs, "LTE release 12 and beyond," IEEE Commun. Mag., vol. 51, no. 7, pp. 154-160, Jul. 2013. https://doi.org/10.1109/MCOM.2013.6553692
  3. K. Kim, S.-W. Jeon, and D. K. Kim, "The feasibility of interference alignment for fullduplex MIMO cellular networks," IEEE Commun. Lett., vol. 19, no. 9, pp. 1500-1503, Sept. 2015. https://doi.org/10.1109/LCOMM.2015.2453166
  4. S.-W. Jeon and C. Suh, "Degrees of freedom of uplink-downlink multiantenna cellular networks," IEEE Trans. Inf. Theory, vol. 62, no. 8, pp. 4589-4603, Aug. 2016. https://doi.org/10.1109/TIT.2016.2529839
  5. S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis, "Applications of self-interference cancellation in 5G and beyond," IEEE Commun. Mag., vol. 52, no. 2, pp. 114-121, Feb. 2014. https://doi.org/10.1109/MCOM.2014.6736751
  6. K. Kim, S.-W. Jeon, J. Yang, and D. K. Kim, "Feasibility of interference alignment for reverse duplex in MIMO cellular networks with one-side base cooperation," J. KICS, vol. 40, no. 2, pp. 273-284, Feb. 2015. https://doi.org/10.7840/kics.2015.40.2.273
  7. S.-W. Jeon and B. C. Jung, "Interference neutralization for small-cell wireless networks," J. KICS, vol. 38, no. 12, pp. 1117-1124, Dec. 2013.
  8. S.-W. Jeon and S.-Y. Chung, "Capacity of a class of linear binary field multisource relay networks," IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6405-6420, Oct. 2013. https://doi.org/10.1109/TIT.2013.2268921
  9. S.-W. Jeon, C.-Y. Wang, and M. Gastpar, "Approximate ergodic capacity of a class of fading two-user two-hop networks," IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 866-880, Feb. 2014. https://doi.org/10.1109/TIT.2013.2293573
  10. T. Gou, S. A. Jafar, C. Wang, S.-W. Jeon, and S.-Y. Chung, "Aligned interference neutralization and the degrees of freedom of the 2 x 2 x 2 interference channel," IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4381-4395, Jul. 2012. https://doi.org/10.1109/TIT.2012.2191388
  11. G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklos, and Z. Turanyi, "Design aspects of network assisted device-to-device communications," IEEE Commun. Mag., vol. 50, no. 3, pp. 170-177, Mar. 2012. https://doi.org/10.1109/MCOM.2012.6163598
  12. A. Asadi, Q. Wang, and V. Mancuso, "A survey on device-to-device communication in cellular networks," IEEE Commun. Surveys & Tuts., vol. 16, no. 4, pp. 1801-1819, 2014. https://doi.org/10.1109/COMST.2014.2319555
  13. K. Doppler, M. Rinne, C. Wijting, C. B. Ribeiro, and K. Hugl, "Device-to-device communication as an underlay to LTEadvanced networks," IEEE Commun. Mag., vol. 47, no. 12, pp. 42-49, Dec. 2009. https://doi.org/10.1109/MCOM.2009.5350367
  14. C.-H. Yu, K. Doppler, C. B. Ribeiro, and O. Tirkkonen, "Resource sharing optimization for device-to-device communication underlaying cellular networks," IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2752-2763, Aug. 2011. https://doi.org/10.1109/TWC.2011.060811.102120
  15. H. Min, J. Lee, S. Park, and D. Hong, "Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks," IEEE Trans. Wireless Commun., vol. 10, no. 12, pp. 3995-4000, Dec. 2011. https://doi.org/10.1109/TWC.2011.100611.101684
  16. C. Xu, L. Song, Z. Han, Q. Zhao, X. Wang, and B. Jiao, "Interference-aware resource allocation for device-to-device communications as an underlay using sequential second price auction," in Proc. IEEE ICC, Jun. 2012.
  17. L. Lei, Z. Zhong, C. Lin, and X. Shen, "Operator controlled device-to-device communications in LTE-advanced networks," IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 96-104, Jun. 2012. https://doi.org/10.1109/MWC.2012.6231164
  18. B. Zhou, H. Hu, S.-Q. Huang, and H.-H. Chen, "Intracluster device-to-device relay algorithm with optimal resource utilization," IEEE Trans. Veh. Tech., vol. 62, no. 5, pp. 2315-2326, Jun. 2013. https://doi.org/10.1109/TVT.2012.2237557
  19. Y. Cao, X. Chen, T. Jiang, and J. Zhang, "SoCast: Social ties based cooperative video multicast," in Proc. IEEE INFOCOM, May 2014.
  20. B. Nazer and M. Gastpar, "Compute-andforward: Harnessing interference through structured codes," IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6463-6486, Oct. 2011. https://doi.org/10.1109/TIT.2011.2165816
  21. B. Nazer and M. Gastpar, "Reliable physical layer network coding," in Proc. IEEE, vol. 99, no. 3, pp. 438-460, Mar. 2011. https://doi.org/10.1109/JPROC.2010.2094170
  22. S.-W. Jeon, C.-Y. Wang, and M. Gastpar, "Computation over gaussian networks with orthogonal components," IEEE Trans. Inf. Theory, vol. 60, no. 12, pp. 7841-7861, Dec. 2014. https://doi.org/10.1109/TIT.2014.2364572
  23. C.-Y. Wang, S.-W. Jeon, and M. Gastpar, "Interactive computation of type-threshold functions in collocated gaussian networks," IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 4765-4775, Sept. 2015. https://doi.org/10.1109/TIT.2015.2455977
  24. M. Yang, S.-W. Jeon, and D. K. Kim, "Linear degrees of freedom of MIMO broadcast channels with reconfigurable antennas in the absence of CSIT," to appear in IEEE Trans. Inf. Theory,
  25. S. H. Chae, S.-W. Jeon, and S. H. Lim, "Fundamental limits of spectrum sharing full-duplex multicell networks," IEEE J. Sel. Areas Commun., vol. 34, no. 11, pp. 3048-3061, Nov. 2016. https://doi.org/10.1109/JSAC.2016.2615186
  26. K. Doppler, C. Yu, C. Ribeiro, and P. Janis, "Mode selection for device-todevice communication underlaying an LTE-advanced network," in IEEE WCNC, pp. 1-6, Sydney, Australia, Apr. 2010.
  27. M. Jung, K. Hwang, and S. Choi, "Joint mode selection and power allocation scheme for power-efficient Device-to-Device (D2D) communication," in Proc. IEEE VTC-Spring, pp. 1-5, Yokohama, Japan, May 2012.