DOI QR코드

DOI QR Code

Polyphase I/Q Network and Active Vector Modulator Based Beam-Forming Receiver For UAV Based Airborne Network

UAV 공중 네트워크를 위한 손실 없는 Polyphase I/Q 네트워크 및 능동 벡터 변조기 기반 빔-포밍 수신기

  • Jung, Won-jae (Kookmin University Department of Secured Smart Electric Vehicle) ;
  • Hong, Nam-pyo (Kookmin University Department of Secured Smart Electric Vehicle) ;
  • Jang, Jong-eun (Epic Solution Co., Ltd.) ;
  • Chae, Hyung-il (Kookmin University Department of Electrical Engineering) ;
  • Park, Jun-seok (Kookmin University Department of Electrical Engineering)
  • Received : 2016.08.30
  • Accepted : 2016.10.24
  • Published : 2016.11.30

Abstract

This paper presents a beam-forming receiver with polyphase In-phase/Quadrature-phase (I/Q) network for airborne communication. In beam-forming receiver, the insertion loss (IL) difference between input path increases the receiver noise figure (NF). The major element for generating IL difference is the impedance variation of phase shifter. In order to maintain a constant IL in every phase, this paper propose a lossless polyphase I/Q network based beam-forming receiver. The proposed lossless polyphase I/Q network has low Q-factor and high impedance for drive back-end VGA (Variable gain amplifier) block with low insertion loss. The 2-stage VGA controls in-phase and quadrature-phase amplitude level for vector summation. The proposed beam-forming receiver prototype is fabricated in TSMC $0.18{\mu}m$ CMOS process. The prototype cover the $360^{\circ}$ with $5.6^{\circ}$ LSB. The average RMS phase error and amplitude error is approximately $1.6^{\circ}$ and 0.3dB.

본 논문은 무인기(UAV) 기반 공중 네트워크 시스템을 위한 polyphase In-phase/Quadrature-phase(I/Q) 네트워크 기반 빔-포밍 수신부를 제안한다. 제안하는 polyphase I/Q 네트워크는 낮은 Q-factor와 높은 임피던스를 갖기 때문에 작은 손실로 벡터 변조기를 구동할 수 있다. 벡터 변조기는 가변 이득 증폭기(VGA)로 구성되며, In-phase 및 Quadrature-phase 위상 신호의 진폭 제어 및 벡터 합을 통해 위상을 가변한다. 제안하는 빔-포밍 수신부는 TSMC $0.18{\mu}m$ CMOS 공정을 통해 구현하였다. 프로토타입은 5-6GHz 주파수 대역(-40dB 입력)에서 검증하였다. 6bit 벡터 변조기 제어를 통해 $5.6^{\circ}$ LSB (least significant bit)로 $360^{\circ}$ 위상 가변이 가능하다. 위상 오차는 평균 $1.6^{\circ}$이며, 진폭 오차는 평균 0.3dB이다.

Keywords

References

  1. H. Y. Seok and Y. H. Sang, "A study for development of airborne relay communication system to military tictical communication networks," in Proc. KICS Int. Conf. Commun., pp. 1544-1545, 2010.
  2. S. Kim and J. Lee, "A study on the routing algorithm in the large scale ad hoc airborne network," in Proc. KICS Winter Conf., pp. 120-121, 2012.
  3. S.-H. Kim, B.-H. Jung, and D.-K. Sung, "Adaptive beamforming antenna scheme to minimize the Interface in a unmanned aerial vehicle (UAV) MANET," 2009 IEEE 20th Int. Symp. Pers., Indoor Mob. Radio Commun., pp. 813-817, Sept. 2009.
  4. H.-S. Yeom, J.-H. Oh, and D.-Y. Sung, "Development of an airborne telemetry relay system using aircraft," J. Korean Soc. for Aeronautical and Space Sci., vol. 40, no. 1, pp. 93-100, 2012. https://doi.org/10.5139/JKSAS.2011.40.1.93
  5. F. Jiang and A. L. Swindlehurst, "Optimization of UAV heading for the ground-to-air uplink," J. Delected Areas in Commun., vol. 30, no. 5, pp. 993-1005, Jun. 2012. https://doi.org/10.1109/JSAC.2012.120614
  6. A. Safarian, L. Zhou, and P. Heydari, "CMOS distributed active power combiners and splitters for multi-antenna UWB beamforming transceivers," IEEE J. Solid-State Cir., vol 42, no. 7, pp. 1481-1491, Jun. 2007. https://doi.org/10.1109/JSSC.2007.899121
  7. M. Fakharzadeh, P. Mousavi, S. Safavi-Naeini, and S. H. Jamali, "The effects of imbalanced phase shifters loss on phased array gain," IEEE Ant. Wirel. Propaga. Lett., vol. 7, pp. 192-196, Mar. 2008. https://doi.org/10.1109/LAWP.2008.920849
  8. A. Natarajan, S. K. Reynolds, M. D. Tsai, S. T. Nicolson, J. H. C. Zhan, D. G. Kam, D. Liu, Y. L. O. Huang, A. Valdes-Garcia, and B. A. Floyd, "A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz communications," IEEE J. Solid-State Cir., vol. 46, no. 5, pp. 1059-1075, Apr. 2011. https://doi.org/10.1109/JSSC.2011.2118110
  9. T. Ji, H. Yoon, J. K. Abraham, and V. K. Varada, "Ku-band antenna array feed distribution network with ferroelectric phase shifters on silicon," IEEE Trans. Microw. Theory Tech., vol. 54, pp. 1131-1138, Mar. 2006. https://doi.org/10.1109/TMTT.2006.869721
  10. H. Hayashi, T. Nakagawa, and K. Araki, "A miniaturized MMIC analog phase shifter using two quarter-wave-length transmission lines," IEEE Trans. Microw. Theory Tech., vol. 50, pp. 150-154, Jan. 2002. https://doi.org/10.1109/22.981259
  11. A. S. Nagra and R. A. York, "Distributed analog phase shifters with low insertion loss," IEEE Trans. Microw. Theory Tech., vol. 47, pp. 1705-1711, 1999. https://doi.org/10.1109/22.788612
  12. L. H. Lu and Y. T. Liao, "A 4-GHz phase shifter MMIC in 0.18-${\mu}m$CMOS," IEEE Microw. Compon. Lett., vol. 15, pp. 694-696, Oct. 2005. https://doi.org/10.1109/LMWC.2005.856842
  13. M. A. F. Borremans, C. R. C. De Ranter, and M. S. J. Steyaert, "A CMOS dual-channel, 100-MHz to 1.1-GHz transmitter for cable applications," IEEE J. Solid-State Cir., vol. 34, no. 12, pp. 1904-1913, Dec. 1999. https://doi.org/10.1109/4.808915
  14. F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, "CMOS mixers and polyphase filters for large image rejection," IEEE J. Solid-State Cir., vol. 36, no. 6, pp. 873-887, Jun. 2001. https://doi.org/10.1109/4.924850
  15. K.-J. Koh, M.-Y. Park, C.-S. Kim, and H.-K. Yu, "Subharmonically pumped CMOs WCDMA direct-conversion transceiver," IEEE J. Solid-State Cir., vol. 39, no. 6, pp. 871-884, Jun. 2004. https://doi.org/10.1109/JSSC.2004.827792