DOI QR코드

DOI QR Code

Physical Properties of Calcium Silicate Inorganic Insulation Depending on Curing Time

칼슘실리케이트 무기 단열소재의 양생기간에 따른 물리 특성

  • Park, Jae-Wan (Energy & Environment Div., Korea Institute of Ceramic Eng. & Tech) ;
  • Chu, Yong-Sik (Energy & Environment Div., Korea Institute of Ceramic Eng. & Tech) ;
  • Jeong, Jae-Hyun (Energy & Environment Div., Korea Institute of Ceramic Eng. & Tech)
  • Received : 2016.06.01
  • Accepted : 2016.10.25
  • Published : 2016.12.20

Abstract

Calcium silicate inorganic insulating material is a porous material which is made of 90 wt% of cement. Unlike existing inorganic insulation materials, it is produced without high temperature curing process and also it costs much less than existing inorganic insulation materials. It is an innovative insulation material that supplemented disadvantages of conventional inorganic insulation material. Researches and developments about inorganic insulation materials have been actively researched abroad. Calcium silicate insulation has $0.13g/cm^3$ of specific gravity. Its heat conductivity is under 0.050W/mK, which it similar to conventional inorganic insulation. However, it has weak compressive strength compared to other inorganic insulation. The point of this research is to manifest that calcium silicate inorganic insulating material can have certain compressive strength after curing process with high insulating performance and to find out the proper curing methods and period.

칼슘실리케이트계 무기단열소재는 주원료로 시멘트를 90%를 사용하는 다공성 무기단열소재이다. 기존 무기단열소재와 달리 고온의 수화반응 처리가 없기 때문에 가격이 저렴하며, 불연소재의 원료를 사용하여 화제의 위험성도 적다. 칼슘실리케이트 단열소재는 $0.13g/cm^3$의 밀도와 0.050W/mK이하의 우수한 열전도도를 갖는 단열소재이다. 칼슘실리케이트 단열소재는 경량화 될수록 내부 기포를 다량 함유해야 하며 기포를 다량 함유함에 따라 단열성 또한 우수해진다. 본 연구에서는 다량의 기포를 함유하며 일정강도발현을 목표로, 칼슘실리케이트계 무기단열소재의 주성분인 시멘트가 수화반응에 따라 초기 및 장기강도발현하는 특성을 이용하여 칼슘실리케이트계 무기단열소재에 적용하여 물리적 특성을 알아보고자 하였다.

Keywords

References

  1. Azree Md, Mydin O.Mechanical properties of foamed concrete exposed to high temperatures. Construction and Building Materials. 2012 Jun;26(1):638-54. https://doi.org/10.1016/j.conbuildmat.2011.06.067
  2. Wei S, Chen Y. Characterization and simulation of microstructure and thermal properties of foamed concrete. Construction and Building Materials. 2013 Oct;47(10):1278-91. https://doi.org/10.1016/j.conbuildmat.2013.06.027
  3. Narayan N, Ramamurthy K. Structure and properties of aerated concrete: a review. Cement and Concrete Composites. 2000 Oct;22(5):321-9. https://doi.org/10.1016/S0958-9465(00)00016-0
  4. Liu ZH. Thermal insulation material based on SiO2 aerogel. 2016 Sep;122(30):548-55. https://doi.org/10.1016/j.conbuildmat.2016.06.096
  5. Habach M. Carbon fibre reinforced cement-based composites as smart floor heating materials. 2016 Apr;90(1):465-70. https://doi.org/10.1016/j.compositesb.2016.01.043
  6. Kim JK. Investigation on the Properties of Lightweight Foamed Concrete in Response to Diverse Dosage of Super Plasticizer. Korea Concrete Institute. 2011 May;5(2):425-6.
  7. Jun J. Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement. Materials and Design. 2016 Aug;92(15):949-59. https://doi.org/10.1016/j.matdes.2015.12.068
  8. Pan Z. Preparation and haracterization of super low density foamed concrete. Construction and Building Materials. 2014 Jun;72(15):256-61. https://doi.org/10.1016/j.conbuildmat.2014.08.078
  9. Cong M, Bing C. Properties of foamed concrete containing water repellents. Construction and Building Materials. 2016 Sep;123(1):106-14. https://doi.org/10.1016/j.conbuildmat.2016.06.148
  10. Han JG, Wang KJ. Influence of bleeding on properties and microstructure of fresh and hydrated portland cement paste. Construction and Building Materials. 2016 Jan;115(15):240-6. https://doi.org/10.1016/j.conbuildmat.2016.04.059