DOI QR코드

DOI QR Code

Preparation of Nanocolumnar In2O3 Thin Films for Highly Sensitive Acetone Gas Sensor

  • Han, Soo Deok (Center for Electronic Materials, Korea Institute of Science and Technology (KIST)) ;
  • Song, Young Geun (Center for Electronic Materials, Korea Institute of Science and Technology (KIST)) ;
  • Shim, Young-Seok (Center for Electronic Materials, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Hae Ryong (Smart Game Platform Research Section, SW.Content Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Yoon, Seok-Jin (Center for Electronic Materials, Korea Institute of Science and Technology (KIST)) ;
  • Kang, Chong-Yun (Center for Electronic Materials, Korea Institute of Science and Technology (KIST))
  • Received : 2016.11.09
  • Accepted : 2016.11.30
  • Published : 2016.11.30

Abstract

Well-ordered nanocolumnar indium oxide ($In_2O_3$) thin films have been successfully fabricated by glancing angle deposition (GAD) using an e-beam evaporator. Nanocolumnar structures have a porous and large surface area with a narrow neck between nanocolumns, which allows them to detect minute amounts of gases. The nanocolumnar $In_2O_3$ thin films were fabricated by the GAD process at five different positions, viz. top, bottom, center, left, and right in a four inch substrate holder. There was a divergence in the thickness and the base resistance of each sensor. However, all the sensors exhibited extremely high sensitivity that was greater than $10^3$ times the change in electrical resistance after being exposed to 50 ppm of acetone gas at $300^{\circ}C$. Furthermore, the nanocolumnar $In_2O_3$ sensors displayed an extremely low detection limit (1.2 ppb) in dry atmosphere as well as in high humidity (80%). We demonstrated that the GAD nanocolumnar $In_2O_3$ sensors have an enormous potential for many applications owing to their particularly simple and reliable fabrication process.

Keywords

References

  1. J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, Future Gener., "Internet of Things (IoT): A vision, architectural elements, and future directions", Comput. Syst., Vol. 29, pp. 1645-1660, 2013.
  2. G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, "Diagnosing lung cancer in exhaled breath using gold nanoparticles", Nat. Nanotechnol. Vol. 4, pp. 669-673, 2009. https://doi.org/10.1038/nnano.2009.235
  3. E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, "Quasi-one dimensional metal oxide semiconductors: preparation, characterization and application as chemical sensors", Prog. Mater. Sci, Vol. 54, pp. 1-67, 2009 https://doi.org/10.1016/j.pmatsci.2008.06.003
  4. A. Kolmakov, M. Moskovits, "Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures", Ann. Rev. Mater. Res, Vol. 34, pp. 151-180, 2014.
  5. J. H Lee, "Gas sensors using hierarchical and hollow oxide nanostructures: overview", Sens. Actuators, B, Vol. 140, pp. 319-336, 2009. https://doi.org/10.1016/j.snb.2009.04.026
  6. M. M. Hawkeye, M. J. Brett, "Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films", J. Vac. Sci. Technol. A, Vol. 25, pp 1317-1335, 2007. https://doi.org/10.1116/1.2764082
  7. H. G. Moon, Y. R. Choi, Y. S. Shim, K. I. Choi, J. H Lee, J. S. Kim, S. J. Yoon, H. H. Park, C. Y. Kang, H. W. Jang, "Extremely Sensitive and Selective NO Probe Based on Villi-like $WO_3$ Nanostructures for Application to Exhaled Breath Analyzers", ACS Appl. Mater. Interfaces, Vol. 5, pp. 10591-10596, 2013. https://doi.org/10.1021/am402456s
  8. K. S. Yoo, S. D. Han, H. G. Moon, S. J. Yoon, C. Y. Kang, "Highly Sensitive $H_2S$ Sensor Based on the Metal-Catalyzed $SnO_2$ Nanocolumns Fabricated by Glancing Angle Deposition", Sensors Vol. 15, pp. 15468-15477, 2015. https://doi.org/10.3390/s150715468
  9. H. Kwon, S. H. Lee, J. K. Kim, "Three-Dimensional Metal-Oxide Nanohelix Arrays Fabricated by Oblique Angle Deposition: Fabrication, Properties, and Applications", Nanoscale Research Letters, Vol, 10, pp. 369, 2015. https://doi.org/10.1186/s11671-015-1057-2
  10. H. G. Moon, S. D. Han, M. G. Kang, W. S. Jung, B. J. Kwon, C. Kim, T. Lee, S. Lee, S. H. Baek, J. S. Kim, H. H. Park, C. Y. Kang, "Glancing angle deposited $WO_3$ nanostructures for enhanced sensitivity to $NO_2$ in gas mixture", Sens. Actuators B, Vol. 229, pp. 92-99, 2016 https://doi.org/10.1016/j.snb.2016.01.084
  11. G. Korotcenkov, "Metal oxides for solid-state gas sensors: What determines our choice?", Materials Science and Engineering B., 139, 1-23, 2007. https://doi.org/10.1016/j.mseb.2007.01.044
  12. C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, C. Zhou, "$In_2O_3$ nanowires as chemical sensors", Appl. Phys. Lett. Vol. 82, pp. 1613, 2003. https://doi.org/10.1063/1.1559438
  13. P. Sowti khiabani, E. Marzbanrad, H. Hassani, B. Raissi, "Fast Response $NO_2$ Gas Sensor Based on $In_2O_3$ Nanoparticles", J. Am. Ceram. Soc. Vol. 96, pp. 2493-2498, 2013 https://doi.org/10.1111/jace.12346
  14. L. Liu, T. Zhang, S. Li, L. Wang, Y. Tian, "Preparation, characterization, and gas-sensing properties of Pd-doped $In_2O_3$ nanofibers", Mater. Lett., Vol. 63, pp. 1975-1977, 2009. https://doi.org/10.1016/j.matlet.2009.05.060
  15. G.L. Long, J.D. Winefordner, "Limit of detection. A closer look at the IUPAC definition", Anal. Chem., Vol. 55, pp. 712A-724A, 1983