DOI QR코드

DOI QR Code

MINLP optimization of a composite I beam floor system

  • Zula, Tomaz (University of Maribor, Faculty of Civil Engineering, Transportation Engineering and Architecture) ;
  • Kravanja, Stojan (University of Maribor, Faculty of Civil Engineering, Transportation Engineering and Architecture) ;
  • Klansek, Uros (University of Maribor, Faculty of Civil Engineering, Transportation Engineering and Architecture)
  • Received : 2016.05.09
  • Accepted : 2016.11.15
  • Published : 2016.12.10

Abstract

This paper presents the cost optimization of a composite I beam floor system, designed to be made from a reinforced concrete slab and steel I sections. The optimization was performed by the mixed-integer non-linear programming (MINLP) approach. For this purpose, a number of different optimization models were developed that enable different design possibilities such as welded or standard steel I sections, plastic or elastic cross-section resistances, and different positions of the neutral axes. An accurate economic objective function of the self-manufacturing costs was developed and subjected to design, resistance and deflection (in)equality constraints. Dimensioning constraints were defined in accordance with Eurocode 4. The Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm was applied together with a two-phase MINLP strategy. A numerical example of the optimization of a composite I beam floor system, as presented at the end of this paper, demonstrates the applicability of the proposed approach. The optimal result includes the minimal produced costs of the structure, the optimal concrete and steel strengths, and dimensions.

Keywords

Acknowledgement

Supported by : Ministry of Higher Education, Science and Technology of the Republic of Slovenia

References

  1. Abadie, J. and Carpentier, J. (1969), Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints, Optimization (R. Fletcher, Ed.), Academic Press, New York, NY, USA.
  2. Adeli, H. and Kim, H. (2001), "Cost optimization of welded of composite floors using neural dynamics model", Commun. Numer. Methods Eng., 17(11), 771-787. https://doi.org/10.1002/cnm.448
  3. Brooke, A., Kendrick, D. and Meeraus A. (1988), GAMS - A User's Guide, Scientific Press, Redwood City, CA, USA.
  4. Cheng, L. and Chan, C.M. (2009), "Optimal lateral stiffness design of composite steel and concrete tall frameworks", Eng. Struct., 31(2), 523-533. https://doi.org/10.1016/j.engstruct.2008.10.003
  5. CPLEX (2016), User Notes, ILOG Inc.
  6. Drudd, A.S. (1994), "CONOPT - A large-scale GRG code", ORSA J. Comput., 6(2), 207-216. https://doi.org/10.1287/ijoc.6.2.207
  7. Eurocode 1 (2002), Actions on structures; European Committee for Standardization, Brussels, Belgium.
  8. Eurocode 2 (2004), Design of concrete structures; European Committee for Standardization, Brussels, Belgium.
  9. Eurocode 3 (2005), Design of steel structures; European Committee for Standardization, Brussels, Belgium.
  10. Eurocode 4 (2004), Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings; European Committee for Standardization, Brussels, Belgium.
  11. Kassapoglou, C. and Dobyns, A.L. (2001), "Simultaneous cost and weight minimization of postbuckled composite panels under combined compression and shear", Struct. Multidisc. Optim., 21(5), 372-382. https://doi.org/10.1007/s001580100116
  12. Kaveh, A. and Abadi, A.S.M. (2010), "Cost optimization of a composite floor system using an improved harmony search algorithm", J. Construct. Steel Res., 66(5), 664-669. https://doi.org/10.1016/j.jcsr.2010.01.009
  13. Kaveh, A. and Ahangaran, M. (2012), "Discrete cost optimization of composite floor system using social harmony search model", Appl. Soft Comput., 12(1), 372-381. https://doi.org/10.1016/j.asoc.2011.08.035
  14. Kaveh, A. and Behnam, A.F. (2012), "Cost optimization of a composite floor system, one-way waffle slab, and concrete slab formwork using a charged system search algorithm", Scientia Iranica A., 19(3), 410-416. https://doi.org/10.1016/j.scient.2012.04.001
  15. Kaveh, A. and Ghafari, M.H. (2016), "Optimum design of steel floor system: effect of floor division number, deck thickness and castellated beams", Struct. Eng. Mech., Int. J., 59(5), 933-950. https://doi.org/10.12989/sem.2016.59.5.933
  16. Kaveh, A. and Massoudi, M.S. (2012), "Cost optimization of a composite floor system using ant colony system", Iran. J. Sci. Technol., 36(C2), 139-148.
  17. KlanSek, U. and Kravanja, S. (2006a), "Cost estimation, optimization and competitiveness of different composite floor systems-Part 1: Self-manufacturing cost estimation of composite and steel structures", J. Construct. Steel Res., 62(5), 434-448. https://doi.org/10.1016/j.jcsr.2005.08.005
  18. KlanSek, U. and Kravanja, S. (2006b), "Cost estimation, optimization and competitiveness of different composite floor systems-Part 2: Optimization based competitiveness between the composite I beams, channel-section and hollow-section trusses", J. Construct. Steel Res., 62(5), 449-462. https://doi.org/10.1016/j.jcsr.2005.08.006
  19. KlanSek, U., Silih, S. and Kravanja, S. (2006), "Cost optimization of composite floor trusses", Steel Compos. Struct., Int. J., 6(5), 435-457. https://doi.org/10.12989/scs.2006.6.5.435
  20. Kovacs, G., Groenwold, A.A., Jarmai, K. and Farkas, J. (2004), "Analysis and optimum design of fibrereinforced composite structures", Struct Multidisc Optim., 28(2), 170-179. https://doi.org/10.1007/s00158-004-0425-9
  21. Kravanja, Z. (2010), "Challenges in sustainable integrated process synthesis and the capabilities of an MINLP process synthesizer MipSyn", Comput. Chem. Eng., 34(11), 1831-1848. https://doi.org/10.1016/j.compchemeng.2010.04.017
  22. Kravanja, Z. and Grossmann, I.E. (1994), "New developments and capabilities in PROSYN - An automated topology and parameter process synthesizer", Comput. Chem. Eng., 18(11-12), 1097-1114. https://doi.org/10.1016/S0098-1354(94)85027-5
  23. Kravanja, S. and Silih, S. (2003), "Optimization based comparison between composite I beams and composite trusses", J. Construct Steel Res., 59(5), 609-625. https://doi.org/10.1016/S0143-974X(02)00045-7
  24. Kravanja, S., Kravanja, Z. and Bedenik, B.S. (1998a), "The MINLP optimization approach to structural synthesis. Part I: A general view on simultaneous topology and parameter optimization", International J. Numer. Method. Eng., 43(2), 263-292. https://doi.org/10.1002/(SICI)1097-0207(19980930)43:2<263::AID-NME412>3.0.CO;2-U
  25. Kravanja, S., Kravanja, Z. and Bedenik, B.S. (1998b), "The MINLP optimization approach to structural synthesis. Part II: Simultaneous topology, parameter and standard dimension optimization by the use of the Linked two-phase MINLP strategy", Int. J. Numer. Methods Eng., 43(2), 293-328. https://doi.org/10.1002/(SICI)1097-0207(19980930)43:2<293::AID-NME413>3.0.CO;2-O
  26. Kravanja, S., Kravanja, Z. and Bedenik, B.S. (1998c), "The MINLP approach to structural synthesis. Part III:Synthesis of roller and sliding hydraulic steel gate structures", Int. J. Numer. Methods Eng., 43(2), 329-364. https://doi.org/10.1002/(SICI)1097-0207(19980930)43:2<329::AID-NME414>3.0.CO;2-7
  27. Kravanja, S., SorSak, A. and Kravanja, Z. (2003), "Efficient multilevel MINLP strategies for solving large combinatorial problems in engineering", Optimiz. Eng., 4(1), 97-151. https://doi.org/10.1023/A:1021812414215
  28. Kravanja, S., Silih, S. and Kravanja, Z. (2005), "The multilevel MINLP optimization approach to structural synthesis: the simultaneous topology, material, standard and rounded dimension optimization", Adv. Eng. Software, 36(9), 568-583. https://doi.org/10.1016/j.advengsoft.2005.03.004
  29. Land, A.H. and Doig, A.G. (1960), "An automatic method of solving discrete programming problems", Econometrica, 28(3), 497-520. https://doi.org/10.2307/1910129
  30. Luo, Y., Wang, M.Y., Zhou, M. and Deng, Z. (2012), "Optimal topology design of steel-concrete composite structures under stiffness and strength constraints", Comput. Struct., 112-113, 433-444. https://doi.org/10.1016/j.compstruc.2012.09.007
  31. Omkar, S.N., Khandelwal, R., Santhosh, Yathindra, Narayana, Naik, G. and Gopalakrishnan, S. (2008), "Artificial immune system for multi-objective design optimization of composite structures", Eng. Applicat. Artif. Intell., 21(8), 1416-1429. https://doi.org/10.1016/j.engappai.2008.01.002
  32. Omkar, S.N., Senthilnath, J., Khandelwal, R., Naik, G.N. and Gopalakrishnan, S. (2011), "Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures", Appl. Soft Comput., 11(1), 489-499. https://doi.org/10.1016/j.asoc.2009.12.008
  33. Poitras, G., Lefrancois, G. and Cormier, G. (2011), "Optimization of steel floor systems using particle swarm optimization", J. Construct. Steel Res., 67(8), 1225-1231. https://doi.org/10.1016/j.jcsr.2011.02.016
  34. Senouci, A.B. and Al-Ansari, M.S. (2009), "Cost optimization of composite beams using genetic algorithms", Adv. Eng. Software, 40(11), 1112-1118. https://doi.org/10.1016/j.advengsoft.2009.06.001
  35. Wolfe, P. (1976), Methods of Nonlinear Programming, John Wiley, New York, NY, USA.

Cited by

  1. Optimum design of stiffened plates for static or dynamic loadings using different ribs vol.74, pp.2, 2016, https://doi.org/10.12989/sem.2020.74.2.255
  2. Flexural behavior of prestressed hybrid wide flange beams with hollowed steel webs vol.38, pp.6, 2021, https://doi.org/10.12989/scs.2021.38.6.691
  3. Mass, Direct Cost and Energy Life-Cycle Cost Optimization of Steel-Concrete Composite Floor Structures vol.11, pp.21, 2016, https://doi.org/10.3390/app112110316
  4. Optimum design of a composite floor system considering environmental and economic impacts vol.15, pp.3, 2016, https://doi.org/10.1590/s1983-41952022000300002