Acknowledgement
Supported by : Agency for Science Technology and Research (SERC)
References
- ABAQUS (2010), ABAQUS/Standard User's Manual; Hibbitt Karlsson and So-rensen Inc., Rising Sun Mills, RI, USA.
- An, C., Castello, X., Duan, M., Filho, R.D.T. and Estefen, S.F. (2012), "Ultimate strength behavior of sandwich pipes filled with steel fiber reinforced concrete", Ocean Eng., 55, 125-135. https://doi.org/10.1016/j.oceaneng.2012.07.033
- Arabzadeh, H, and Zeinoddini, M. (2011), "Dynamic response of pressurized submarine pipelines subjected to transverse impact loads", Procedia Eng., 14, 648-655. https://doi.org/10.1016/j.proeng.2011.07.082
- Arjomandi, K. and Taheri, F. (2011), "Stability and post buckling response of sandwich pipes under hydrostatic external pressure", Int. J. Press Vessels Pip., 88(4), 138-148. https://doi.org/10.1016/j.ijpvp.2011.02.002
- Brockenbrough, R.L. and Merritt, F.S. (2006), Structural Steel Designer's Handbook: AISC, AASHTO, AISI, ASTM and ASCE-07 Design Standards; Mcgraw, Inc., New York, NY, USA.
- Brooker, D.C. (2005), "Experimental puncture loads for external interference of pipelines by excavator equipment", Int. J. Press Vessels Pip., 82(11), 825-832. https://doi.org/10.1016/j.ijpvp.2005.07.005
- Chia, K.S., Zhang, M.H. and Liew, J.Y.R. (2011), "High-strength ultra lightweight cement composite material properties", Proceedings of 9th International Symposium on High Performance Concrete-Design, Verification & Utilization, Primary Section A8-paper 2.
- Comite Euro-International du Beton (CEB) (1993), CEB-FIP Model Code 1990; Redwood Books, Trowbridge, Wiltshire, UK.
- Crupi, V., Epasto, G. and Guglielmino, E. (2011), "Low-velocity impact strength of sandwich materials", J. Sandw. Struct. Mater., 13(4), 409-426. https://doi.org/10.1177/1099636210385285
- DNV-RP-F107 (2010), Risk Assessment of Pipeline Protection; Recommended practice, Det Norske Veritas (DNV).
- DNV-RP-F111 (2010), Interference between Trawl Gear and Pipelines; Recommended practice, Det Norske Veritas (DNV).
- Ding, X., Fan, Y., Kong, G. and Zheng, C. (2014), "Wave propagation in a concrete filled steel tubular column due to transient impact loading", Steel Compos. Struct., Int. J., 17(6), 891-906. https://doi.org/10.12989/scs.2014.17.6.891
- Famiyesin, O.O.R., Oliver, K.D. and Rodger, A.A. (2002), "Semi-empirical equations for pipeline design by the finite element method", Comput. Struct., 80(16-17), 1369-1382. https://doi.org/10.1016/S0045-7949(02)00097-4
- Goldsmith, W. (1960), Impact, the Theory and Physical Behavior of Colliding Solids, Edward Arnold Publishers, London, UK.
- Hallquist, J.O. (2006), LS-DYNA keyword user manual-nonlinear dynamic analysis of structures;Livermore Software technology Corporation, Livermore, CA, USA.
- Han, L.H., Huang, H., Tao, Z. and Zhao, X.L. (2006), "Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending", Eng. Struct., 28(12), 1698-1714. https://doi.org/10.1016/j.engstruct.2006.03.004
- Jankowiak, A.R., Kpenyigba, K.M. and Pesci, R (2014), "Ballistic behavior of steel sheet subjected to impact and perforation", Steel Compos. Struct., Int. J., 16(6), 595-609. https://doi.org/10.12989/scs.2014.16.6.595
- Jones, N. and Birch, R.S. (2010), "Low-velocity impact of pressurized pipelines", Int. J. Impact Eng., 37(2), 207-219. https://doi.org/10.1016/j.ijimpeng.2009.05.006
- Jones, N., Brich, S.E., Birch, R.S., Zhu, L. and Brown, M. (1992), "An experimental study on the lateral impact of fully clamped mild steel pipes", Proc. Instn. Mech. Eng. E. J. Process. Mech. Eng., 206, 111-127. https://doi.org/10.1243/PIME_PROC_1992_206_207_02
- Kantar, E. and Anil, O. (2012), "Low velocity impact behavior of concrete beam strengthened with CFRP strip", Steel Compos. Struct., Int. J., 12(3), 207-230. https://doi.org/10.12989/scs.2012.12.3.207
- Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., Int. J., 17(4), 387-403. https://doi.org/10.12989/scs.2014.17.4.387
- Lee, E.H. (1940), "The impact of a mass striking a beam", J. Appl. Mech., 7, A129-38.
- Li, W., Han, L.H. and Zhao, X.L. (2012), "Axial strength of concrete-filled double skin steel tubular (CFDST) columns with preload on steel tubes", Thin-Wall. Struct., 56, 9-20. https://doi.org/10.1016/j.tws.2012.03.004
- Malekzadeh, F.K. (2014), "Higher order impact analysis of sandwich panels with functionally graded flexible cores", Steel Compos. Struct., Int. J., 16(4), 389-415. https://doi.org/10.12989/scs.2014.16.4.389
- Malvar, L.J. and Ross, C.A. (1998), "Review of strain rate effects for concrete in tension", ACI Mat. J., 95(6), 735-739.
- Malvar, L.J., Crawford, J.E., Wesevich, J.W. and Simons, D. (1997), "A plasticity concrete material model for DYNA3D", Int. J. Impact Eng., 19(9-10), 847-873. https://doi.org/10.1016/S0734-743X(97)00023-7
- Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B. and Kostazos, P.K. (2010), "Bending of cylindrical steel tubes: numerical modeling", Int. J. Crashworthiness, 11(1), 37-47. https://doi.org/10.1533/ijcr.2005.0382
- Ng, C.S. and Shen, W.Q. (2006), "Effect of lateral impact loads on failure of pressurized pipelines supported by foundation", Proc. Instn. Mech. Eng. E. J. Process Mech. Eng., 220, 193-206. https://doi.org/10.1243/0954408JPME97
- Qian, X., Wang, Y., Liew, J.Y.R. and Zhang, M.H. (2015), "A load indentation formulation for cement filled pipe-in-pipe composite structures", Eng. Struct., 92, 84-100. https://doi.org/10.1016/j.engstruct.2015.03.012
- Richardson, M.O.W. and Wishear, M.J. (1996), "Review of low-velocity impact properties of composite materials", Compos. A Appl. Sci. Manuf., 27A(12), 1123-1131.
- Shen, W.Q. and Shu, D.W. (2002), "A theoretical analysis on the failure of unpressurized and pressurized pipelines", Proc. Instn. Mech. Eng. E. J. Process Mech. Eng., 216(), 151-164.
- Sohel, K.M.A. (2008), "Impact performance of steel-concrete-steel sandwich structures", Ph.D. Dissertation; National University of Singapore, Singapore.
- Thomas, S.G., Reid, S.R. and Johnson, W. (1976), "Large deformations of thin-walled circular tubes under transverse loading-I An experimental survey of the bending of simply supported tubes under a central load", Int. J. Mech. Sci., 18(6), 325-333. https://doi.org/10.1016/0020-7403(76)90035-7
- Uenaka, K. and Kitoh, H. (2011), "Mechanical behavior of concrete filled double skin tubular circular deep beams", Thin-Wall. Struct., 49(2), 256-263. https://doi.org/10.1016/j.tws.2010.10.005
- Uenaka, K., Kitoh, H. and Sonoda, K. (2010), "Concrete filled double skin circular stub columns under compression", Thin-Wall. Struct., 48(1), 19-24. https://doi.org/10.1016/j.tws.2009.08.001
- Wang, Y. (2015), "Impact performance of cement composite filled pipe in pipe structures", Ph.D. Dissertation; National University of Singapore, Singapore.
- Wang, Y., Qian, X., Liew, J.Y.R. and Zhang, M.H. (2014), "Experimental behavior of cement filled pipe-inpipe composite structures under transverse impact", Int. J. Impact Eng., 72, 1-16. https://doi.org/10.1016/j.ijimpeng.2014.05.004
- Wang, Y., Qian, X., Liew, J.Y.R. and Zhang, M.H. (2015), "Impact of cement composite filled steel tubes:an experimental, numerical and theoretical treatise", Thin-Wall. Struct., 87, 76-88. https://doi.org/10.1016/j.tws.2014.11.007
- Wen, H.M. (1997), "Large plastic deformation of spherical shells under impact by blunt-ended missiles", Int. J. Press. Vessels Pip., 73(2), 147-152. https://doi.org/10.1016/S0308-0161(97)00043-4
- Wen, H.M. and Reid, S.R. (1998), "Deformation and perforation of cylindrical shells struck normally by blunt projectiles", Int. J. Press. Vessels Pip., 75(3), 213-219. https://doi.org/10.1016/S0308-0161(98)00024-6
- Wierzbicki, T. and Suh, M.S. (1988), "Indentation of tubes under combined loading", Int. J. Mech. Sci., 30(3-4), 229-248. https://doi.org/10.1016/0020-7403(88)90057-4
- Xie, Z., Yan, Q. and Li, X. (2014), "Investigation on low velocity impact on a foam core composite sandwich panel", Steel Compos. Struct., Int. J., 17(2), 159-172. https://doi.org/10.12989/scs.2014.17.2.159
- Yang, J.L., Lu, G.Y., Yu, T.X. and Reid, S.R. (2009), "Experimental study and numerical simulation of pipe-on-pipe impact", Int. J. Impact Eng., 36(10-11), 1259-1268. https://doi.org/10.1016/j.ijimpeng.2009.05.001
- Yang, Y.F., Han, L.H. and Sun, B.H. (2012), "Experimental behavior of partially loaded concrete filled double-skin steel tube (CFDST) sections", J. Constr. Steel Res., 71, 63-73. https://doi.org/10.1016/j.jcsr.2011.11.005
- Zhang, Y.F., Zhao, J.H. and Cai, C.S. (2012), "Seismic behavior of ring beam joints between concrete-filled twin steel tubes columns and reinforced concrete beams", Eng. Struct., 39, 1-10. https://doi.org/10.1016/j.engstruct.2012.01.014
- Zhao, X.L. and Han, L.H. (2006), "Double skin composite construction", Prog. Struct. Eng. Mater., 8(3), 93-102. https://doi.org/10.1002/pse.216
- Zhao, X.L., Tong, L.W. and Wang, X.Y. (2010), "CFDST stub columns subjected to large deformation axial loading", Eng. Struct., 32(3), 692-703. https://doi.org/10.1016/j.engstruct.2009.11.015
- Zeinoddini, M., Parke, G.A.R. and Harding, J.E. (2002), "Axially pre-loaded steel tubes subjected to lateral impacts: an experimental study", Int. J. Impact Eng., 27(6), 669-690. https://doi.org/10.1016/S0734-743X(01)00157-9
- Zeinoddini, M., Harding, J.E. and Parke, G.A.R. (2008a), "Axially pre-loaded steel tubes subjected to lateral impacts: a numerical simulation", Int. J. Impact Eng., 35(11), 1267-1279. https://doi.org/10.1016/j.ijimpeng.2007.08.002
- Zeinoddini, M., Parke, G.A.R. and Harding, J.E. (2008b), "Interface forces in laterally impacted steel tubes", Proc. Soc. Exp. Mech., 48(3), 265-280.
- Zeinoddini, M., Arabzadeh, H., Ezzati, M. and Parke, G.A.R. (2013), "Response of submarine pipelines to impacts from dropped objects: bed flexibility effects", Int. J. Impact Eng., 62, 129-141. https://doi.org/10.1016/j.ijimpeng.2013.06.010
Cited by
- Behavior of a steel bridge with large caisson foundations under earthquake and tsunami actions vol.31, pp.6, 2016, https://doi.org/10.12989/scs.2019.31.6.575
- A Case Study of Floating Offshore Super-Long Steel Pipeline Combing with Field Monitoring vol.11, pp.21, 2016, https://doi.org/10.3390/app112110186