DOI QR코드

DOI QR Code

Confinement models for high strength short square and rectangular concrete-filled steel tubular columns

  • Aslani, Farhad (School of Civil, Environmental and Mining Engineering, The University of Western Australia) ;
  • Uy, Brian (Centre for Infrastructure Engineering and Safety, The University of New South Wales) ;
  • Wang, Ziwen (Centre for Infrastructure Engineering and Safety, The University of New South Wales) ;
  • Patel, Vipul (School of Engineering and Mathematical Sciences, College of Science, Health and Engineering, La Trobe University)
  • Received : 2016.07.07
  • Accepted : 2016.10.28
  • Published : 2016.12.10

Abstract

While extensive efforts have been made in the past to develop finite element models (FEMs) for concrete-filled steel tubular columns (CFSTCs), these models may not be suitable to be used in some cases, especially in view of the utilisation of high strength steel and high strength concrete. A method is presented herein to predict the complete stress-strain curve of concrete subjected to tri-axial compressive stresses caused by axial load coupled with lateral pressure due to the confinement action in square and rectangular CFSTCs with normal and high strength materials. To evaluate the lateral pressure exerted on the concrete in square and rectangular shaped columns, an accurately developed FEM which incorporates the effects of initial local imperfections and residual stresses using the commercial program ABAQUS is adopted. Subsequently, an extensive parametric study is conducted herein to propose an empirical equation for the maximum average lateral pressure, which depends on the material and geometric properties of the columns. The analysis parameters include the concrete compressive strength ($f^{\prime}_c=20-110N/mm^2$), steel yield strength ($f_y=220-850N/mm^2$), width-to-thickness (B/t) ratios in the range of 15-52, as well as the length-to-width (L/B) ratios in the range of 2-4. The predictions of the behaviour, ultimate axial strengths, and failure modes are compared with the available experimental results to verify the accuracy of the models developed. Furthermore, a design model is proposed for short square and rectangular CFSTCs. Additionally, comparisons with the prediction of axial load capacity by using the proposed design model, Australian Standard and Eurocode 4 code provisions for box composite columns are carried out.

Keywords

References

  1. ABAQUS (2013), ABAQUS Standard User's Manual, Version 6.13, Dassault Systemes Corp., Providence, RI, USA.
  2. American Concrete Institute (ACI) (2010), Building code requirements for structural concrete and commentary; ACI 318-10. Farmington Hills, MI, USA.
  3. AS 5100.6 (2004), Bridge design Part 6: Steel and composite construction, Standards Australia, Sydney, New South Wales, Australia.
  4. Aslani, F. (2013), "Effects of specimen size and shape on compressive and tensile strengths of selfcompacting concrete with or without fibers", Magaz. Concrete Res., 65(15), 914-929. https://doi.org/10.1680/macr.13.00016
  5. Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015a), "Behaviour and design of composite columns incorporating compact high-strength steel plates", J. Construct. Steel Res., 107, 94-110. https://doi.org/10.1016/j.jcsr.2015.01.005
  6. Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015b), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., Int. J., 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967
  7. Aslani, F., Lloyd, R., Uy, B., Kang, W.H. and Hicks, S. (2016), "'Statistical calibration of safety factors for flexural stiffness of composite columns", Steel Compos. Struct., Int. J., 20(1), 127-145. https://doi.org/10.12989/scs.2016.20.1.127
  8. Aslani, F., Uy, B., Hur, J. and Carino, P. (2017), "Behaviour and design of hollow and concrete-filled spiral welded steel tube columns subjected to axial compression", J. Constr. Steel Res., 128, 261-288. https://doi.org/10.1016/j.jcsr.2016.08.023
  9. Bazant, Z.P. and Becq-Giraudon, E. (2002), "Statistical prediction of fracture parameters of concrete and implications for choice of testing standard", Cem. Concr. Res., 32(4), 529-556. https://doi.org/10.1016/S0008-8846(01)00723-2
  10. Chen, Z.Y. and Shen, Z.Y. (2010), "Behavior of L-shaped concrete-filled steel stub columns under axial loading: experiment", Adv. Steel Constr., 6(2), 688-697.
  11. Chen, B., Liu, X. and Li, S. (2011), "Performance investigation of square concrete-filled steel tube columns", J. Wuhan Univ. Tech., 24(4), 730-736.
  12. Chen, C.C., Ko, J.W., Huang, G.L. and Chang, Y.M. (2012), "Local buckling and concrete confinement of concrete-filled box columns under axial load", J. Constr. Steel Res., 78, 8-21. https://doi.org/10.1016/j.jcsr.2012.06.006
  13. Eurocode 4 (2004), Design of composite steel and concrete structures; Part1.1, General rules and rules for Building, BS EN 1994-1-1: British Standards Institution, London, UK.
  14. FIP (2010), CEB-FIP Model Code 2010, Thomas Telford Ltd., London, UK.
  15. Fujimoto, T., Nishiyama, I., Mukai, A. and Baba, T. (1995), "Test results of eccentrically loaded short columns-square CFT columns", Proceedings of the Second Joint Technical Coordinating Committee Meeting on Composite and Hybrid Structures, Hawaii, USA.
  16. Guo, L., Zhang, S., Kim, W.J. and Ranzi, G. (2007), "Behavior of square hollow steel tubes and steel tubes filled with concrete", Thin-Wall. Struct., 45(12), 961-973. https://doi.org/10.1016/j.tws.2007.07.009
  17. Han, L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", J. Constr. Steel Res., 58(3), 353-372. https://doi.org/10.1016/S0143-974X(01)00059-1
  18. Han, L.H., Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004
  19. Hernandez-Figueirido, D., Romero, M.L., Bonet, J.L. and Montalva, J.M. (2012), "Ultimate capacity of rectangular concrete-filled steel tubular columns under unequal load eccentricities", J. Constr. Steel Res., 68(1), 107-117. https://doi.org/10.1016/j.jcsr.2011.07.014
  20. Hong, G., Kim, W., Choi, I. and Chung, K. (2013), "Structural performance of high strength concrete filled steel tube with the width-to-thickness ratio", Appl. Mech. Mater., 284-287, 1390-1395. https://doi.org/10.4028/www.scientific.net/AMM.284-287.1390
  21. Johansson, M. and Gylltoft, K. (2001), "Structural behavior of slender circular steel-concrete composite columns under various means of load application", Steel Compos. Struct., Int. J., 1(4), 393-410. https://doi.org/10.12989/scs.2001.1.4.393
  22. Kilpatrick, A.E. and Rangan, B.V. (1999a), "Tests on high-strength concrete-filled steel tubular columns", ACI Struct. J., 96(2), 268-274.
  23. Kilpatrick, A.E. and Rangan, B.V. (1999b), "Influence of interfacial shear transfer on behavior of concretefilled steel tubular columns", ACI Struct. J., 96(4), 642-648.
  24. Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Constr. Steel Res., 64(11), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012
  25. Lee, M.J., Oh, Y.S. and Lee, E.T. (2009), "Examination of yield stress limitation for concrete filled steel tube (CFT) column using SM570TMC steel", Tubular Structures XII, 93-102.
  26. Liu, D.L. (2004), "Behaviour of high strength rectangular concrete-filled steel hollow section columns under eccentric loading", Thin-Wall. Struct., 42(12), 1631-1644. https://doi.org/10.1016/j.tws.2004.06.002
  27. Liu, D.L. (2005), "Tests on high-strength rectangular concrete-filled steel hollow section stub columns", J Constr. Steel Res., 61(7), 902-911. https://doi.org/10.1016/j.jcsr.2005.01.001
  28. Liu, D.L. (2006), "Behaviour of eccentrically loaded high-strength rectangular concrete-filled steel tubular columns", J. Constr. Steel Res., 62(8), 839-846. https://doi.org/10.1016/j.jcsr.2005.11.020
  29. Liu, D. and Gho, W.M. (2005), "Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns", Thin-Wall. Struct., 43(8), 1131-1142. https://doi.org/10.1016/j.tws.2005.03.007
  30. Liu, D., Gho, W.M. and Yuan, J. (2003), "Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns", J. Constr. Steel Res., 59(12), 1499-1515. https://doi.org/10.1016/S0143-974X(03)00106-8
  31. Melcher, J.J. and Karmazinova, M. (2004), "The analysis of composite steel-and concrete compression members with high-strength concrete", Proceedings of SSRC annual technical session, 223-237.
  32. Mursi, M. and Uy, B. (2004), "Strength of slender concrete filled high strength steel box columns", J. Constr. Steel Res., 60(12), 1825-1848. https://doi.org/10.1016/j.jcsr.2004.05.002
  33. Mursi, M. and Uy, B. (2006a), "Behaviour and design of fabricated high strength steel columns subjected to biaxial bending, Part 1: Experiments", Int. J. Adv. Steel Constr., 2(4), 286-315.
  34. Mursi, M. and Uy, B. (2006b), "Behaviour and design of fabricated high-strength steel columns subjected to biaxial bending, Part 2: Analysis and design codes", Int. J. Adv. Steel Constr., 2(4), 316-354.
  35. Packer, J.A. and Henderson, J.E. (2003), "Hollow structural section connections and trusses-A design guide", Canadian Institute of Steel Construction (CISC), Toronto, Canada.
  36. Portoles, J.M., Romero, M.L., Filippou, F.C. and Bonet, J.L. (2011), "Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns", Eng. Struct., 33(5), 1576-1593. https://doi.org/10.1016/j.engstruct.2011.01.028
  37. Rangan, B.V. and Joyce, M. (1992), "Strength of eccentrically loaded slender steel tubular columns filled with high-strength concrete", ACI Struct. J., 89(6), 676-681.
  38. Ren, Q.X., Han, L.H., Lam, D. and Hou, C. (2014), "Experiments on special-shaped CFST stub columns under axial compression", J. Constr. Steel Res., 98, 123-133. https://doi.org/10.1016/j.jcsr.2014.03.002
  39. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng.-ASCE, 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  40. Susantha, K.A.S., Ge, H. and Usami, T. (2001), "Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes", Eng. Struct., 23(10), 1331-1347. https://doi.org/10.1016/S0141-0296(01)00020-7
  41. Uy, B. (1998), "Local and post-local buckling of concrete filled steel welded box columns", J. Constr. Steel Res., 47(1-2), 47-72. https://doi.org/10.1016/S0143-974X(98)80102-8
  42. Uy, B. (1999), "Axial compressive strength of steel and composite columns fabricated with high-strength steel plate", Proceedings of the Second International Conference on Advances in Steel Structures, Hong Kong, pp. 421-428.
  43. Uy, B. (2001a), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6
  44. Uy, B. (2001b), "Axial compressive strength of short steel and composite columns fabricated with high strength steel plate", Steel Compos. Struct., Int. J., 1(2), 171-185. https://doi.org/10.12989/scs.2001.1.2.171
  45. Uy, B., Mursi, M. and Tan, A. (2002), "Strength of slender composite columns fabricated with high-strength structural steel", Proceedings of the 3rd International Conference on Advances in Steel Structures ICASS'02, Hong Kong, December, pp. 575-582.
  46. Uy, B., Khan, M., Tao, Z. and Mashiri, F. (2013), "Behaviour and design of high-strength steel concrete filled columns", Proceedings of the 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM13), Jeju, Korea, pp. 150-167.
  47. Yang, H., Lam, D. and Gardner, L. (2008), "Testing and analysis of concrete-filled elliptical hollow sections", Eng. Struct., 30(12), 3771-3781. https://doi.org/10.1016/j.engstruct.2008.07.004
  48. Yang, Y.L., Yang, H. and Zhang, S.M. (2010), "Compressive behavior of T-shaped concrete filled steel tubular columns", Int. J. Steel Struct., 10(4), 419-430. https://doi.org/10.1007/BF03215849
  49. Yi, S.T., Yang, E.I. and Choi, J.C. (2006), "Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete", Nucl. Eng. Des., 232(2), 115-127.
  50. Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular columns", Thin-Wall. Struct., 46(4), 362-370. https://doi.org/10.1016/j.tws.2007.10.001
  51. Zhang, S., Guo, L., Ye, Z. and Wang, Y. (2005), "Behavior of steel tube and confined high strength concrete for concrete-filled RHS tubes", Adv. Struct. Eng., 8(2), 101-116. https://doi.org/10.1260/1369433054037976
  52. Zhu, A.Z., Luo, L.L. and Zhu, H.P. (2012), "Experimental study on concrete-filled cold-formed steel tubular stub columns", Tubular Structures XIV, 73-80.

Cited by

  1. Semi-analytical solutions of ultimate load for a rectangular concrete-filled tubular column subjected to eccentric compression pp.2116-7214, 2018, https://doi.org/10.1080/19648189.2018.1482791
  2. Structural response of rectangular composite columns under vertical and lateral loads vol.25, pp.3, 2017, https://doi.org/10.12989/scs.2017.25.3.287
  3. Performance of lightweight aggregate and self-compacted concrete-filled steel tube columns vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.299
  4. Composite action of concrete-filled double circular steel tubular stub columns vol.29, pp.1, 2016, https://doi.org/10.12989/scs.2018.29.1.077
  5. Composite action of hollow concrete-filled circular steel tubular stub columns vol.26, pp.6, 2016, https://doi.org/10.12989/scs.2018.26.6.693
  6. Local buckling of rectangular steel tubes filled with concrete vol.31, pp.2, 2016, https://doi.org/10.12989/scs.2019.31.2.201
  7. Mechanical Performance of Stiffened Concrete Filled Double Skin Steel Tubular Stub Columns under Axial Compression vol.23, pp.5, 2016, https://doi.org/10.1007/s12205-019-1313-6
  8. Eccentrically loaded SFRC-filled stainless steel columns vol.172, pp.7, 2019, https://doi.org/10.1680/jstbu.17.00165
  9. Compressive strengths of concrete-filled double-skin (circular hollow section outer and square hollow section inner) aluminium tubular sections vol.22, pp.11, 2016, https://doi.org/10.1177/1369433219842381
  10. Behavior of Rectangular-Sectional Steel Tubular Columns Filled with High-Strength Steel Fiber Reinforced Concrete Under Axial Compression vol.12, pp.17, 2016, https://doi.org/10.3390/ma12172716
  11. Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network vol.35, pp.3, 2016, https://doi.org/10.12989/scs.2020.35.3.415
  12. Design and testing of stainless steel columns filled with steel-fibre-reinforced concrete vol.173, pp.7, 2016, https://doi.org/10.1680/jstbu.18.00165
  13. A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns vol.25, pp.15, 2016, https://doi.org/10.3390/molecules25153486
  14. Compressive behavior of steel-reinforced concrete-filled circular steel tubular stub columns vol.28, pp.None, 2016, https://doi.org/10.1016/j.istruc.2020.08.012
  15. Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer vol.38, pp.2, 2016, https://doi.org/10.12989/scs.2021.38.2.165
  16. Mechanical behavior of outer square inner circular concrete-filled dual steel tubular stub columns vol.38, pp.3, 2016, https://doi.org/10.12989/scs.2021.38.3.305
  17. Hybrid simulation tests of high-strength steel composite K-eccentrically braced frames with spatial substructure vol.38, pp.4, 2016, https://doi.org/10.12989/scs.2021.38.4.381
  18. Effect of geometrical properties on slenderness ratio of concrete filled multi-skins steel tube column vol.1895, pp.1, 2016, https://doi.org/10.1088/1742-6596/1895/1/012064
  19. Numerical Investigation of Composite Behavior and Strength of Rectangular Concrete-Filled Cold-Formed Steel Tubular Stub Columns vol.14, pp.20, 2016, https://doi.org/10.3390/ma14206221