DOI QR코드

DOI QR Code

DIGITAL HOMOLOGY GROUPS OF DIGITAL WEDGE SUMS

  • Kang, Jeang Min (Department of Mathematics, Yonsei University) ;
  • Han, Sang-Eon (Department of Mathematics Education, Institute of Pure and Applied Mathematics, Chonbuk National University)
  • Received : 2016.11.06
  • Accepted : 2016.12.05
  • Published : 2016.12.25

Abstract

The present paper investigates some properties of the digital homology in [1, 4, 5] and points out some unclearness of the definition of a digital homology and further, suggests a suitable form of a digital homology. Finally, we calculate a digital homology group and a relative digital homology group of some digital wedge sums. Finally, the paper corrects some errors in [6]. In the present paper all digital images (X, k) are assumed to be non-empty and k-connected.

Keywords

References

  1. H. Arslan, I. Karaca, A. Oztel, Homology groups of n-dimensional digital images, XXI. Turkish National Mathematics Symposium (2008), 1-13.
  2. L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision, 10(1999) 51-62. https://doi.org/10.1023/A:1008370600456
  3. L. Boxer, I. Karaca, A. Oztel, Topological invariants in digital images, Journal of Mathematical Sciences: Advances and Applications 11(2011), 109-140.
  4. O. Ege, I. Karaca, M. E. Ege, Some results on simplicial homology groups 2D digital images, International Jour. of Information and Computer Sci. 1(8) (2012), 198-203.
  5. O. Ege, I. Karaca, M. E. Ege, Fundamental properties of digital simplicial homology groups, American Jour. of Computer and Technology and Applications 1(2) (2013), 25-41.
  6. O. Ege, I. Karaca, M. E. Ege, Relative homology groups of digita images, Appl. Math. Inf. Sci. 8(5) (2014), 2337-2345. https://doi.org/10.12785/amis/080529
  7. S.-E. Han, Non-product property of the digital fundamental group, Information Sciences 171(1-3) (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018
  8. S.-E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27(1) (2005), 115-129.
  9. S. E. Han, Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Information Sciences 176(1)(2006) 120-134. https://doi.org/10.1016/j.ins.2005.01.002
  10. S.-E. Han, Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society 44 (6) (2007), 1479-1503. https://doi.org/10.4134/JKMS.2007.44.6.1479
  11. S.-E. Han, The k-homotopic thinning and a torus-like digital image in $Z^n$, Journal of Mathematical Imaging and Vision 31(1) (2008), 1-16. https://doi.org/10.1007/s10851-007-0061-2
  12. S.-E. Han, KD-($k_0, k_1$)-homotopy equivalence and its applications, Journal of Korean Mathematical Society 47(5)(2010), 1031-1054. https://doi.org/10.4134/JKMS.2010.47.5.1031
  13. S.-E. Han, Ultra regular covering spaces and its automorphism group, Int. J. Appl. Math. Comput. Sci. 20(4)(2010), 699-710. https://doi.org/10.2478/v10006-010-0053-z
  14. S.-E. Han, Fixed point theorems for digital images, Honam Mathemaical Journal 37(4) (2015) 595-608. https://doi.org/10.5831/HMJ.2015.37.4.595
  15. S.-E. Han, Wei Yao, Euler characteristics of digital wedge sums and their applications, Topological Methods in Nonlinear Analysis (2016), in press.
  16. S.-E. Han and B.G. Park, Digital graph ($k_0, k_1$)-isomorphism and its applications, http://atlas-conferences.com/c/a/k/b/36.htm (2003).
  17. E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics (1987) 227- 234.
  18. C. O. Kiselman, Digital geometry and mathematical morphology, Lecture Notes, Uppsala University, Department of Mathematics, available at www.math.uu.se/kiselman (2002).
  19. T. Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
  20. A. Rosenfeld, Digital topology, Amer. Math. Monthly 86 (1979), 76-87.
  21. A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
  22. E.H. Spanier, Algebraic Topology, McGraw-Hill Inc., New York, 1966.