DOI QR코드

DOI QR Code

Size Determination Method of Bio-Retention Cells for Mimicking Natural Flow Duration Curves

자연상태 유황곡선 보전을 위한 생태저류지 용량결정방법

  • Lee, Okjeong (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Jang, Suhyung (Water Resources Center, K-water Institude) ;
  • Kim, Hongtae (National Institute of Environmental Research Watershed Pollution Load Management Research Division) ;
  • Kim, Sangdan (Department of Environmental Engineering, Pukyong National University)
  • 이옥정 (부경대학교 지구환경시스템과학부 환경공학전공) ;
  • 장수형 (K-water 수자원연구소) ;
  • 김홍태 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 김상단 (부경대학교 환경공학과)
  • Received : 2016.10.04
  • Accepted : 2016.11.03
  • Published : 2016.11.30

Abstract

LID facilities like bio-retention cells is applied to manage stormwater. LID concept becomes an important part in stormwater management, and the clear understanding of hydrologic performance and hydrologic impact on the corresponding catchment has been needed. In this study, the application of flow duration curves as design strategy is investigated. Bio-retention cells like many LID facilities are installed to reproduce natural hydrologic processes. In this study, the attempt to determine the size of a bio-retention cell is carried out to satisfy the flow duration criteria. From the results, it is shown that "5 mm * the area of a target catchment" which is the current facility design capacity is valid for the drainage area with 20-30% impervious rate. In the 100% impervious catchment where LID facilities are typically installed, the design capacity to intercept stormwater of approximately 47 mm depth is required to reproduce natural flow duration curves. This means that about 11% of the target catchment area should be allocated as a bio-retention cell. However, the criteria of the design capacity and facility surface area should be set at the possible implementation conditions in reality, and site-specific hydrologic characteristics of a target catchment should be considered.

생태저류지와 같은 LID 시설은 강우유출수를 관리하기 위하여 적용된다. LID 개념이 강우유출수 관리 계획의 중요한 부분이 되면서, LID 시설의 수문학적 성능과 LID 시설이 배수분구의 수문환경에 미치는 영향에 대한 명확한 이해가 필요한 상황이다. 본 연구는 설계 전략으로서 유황곡선의 활용에 관한 사항을 다루고 있다. 많은 LID 시설들과 마찬가지로 생태저류지는 자연 상태의 수문현상을 재현하고자 설치된다. 본 연구에서는 유황곡선 기준을 만족하는 생태저류지의 크기를 결정하려는 시도가 수행된다. 연구 결과, 현재 비점오염저감시설의 용량기준인 "5mm * 처리대상구역의면적"은 불투수율 20-30%인 지역에 유효함을 살펴볼 수 있다. LID 시설이 전형적으로 설치되는 100% 불투수 지역의 경우 자연상태 유황곡선의 재현을 기준으로 보면 47mm 정도의 유출고를 차집할 수 있는 용량이 요구되며, 이는 처리대상구역 면적의 11% 정도가 생태저류지로 활용되어야함을 의미한다. 하지만, 시설의 용량과 시설 면적의 기준은현실적으로 구현 가능한 조건에서 설정되어야 할 것이며, 또한 처리대상구역의 개별적인 수문학적 특성을 반영하여 결정되어야 할 것이다.

Keywords

References

  1. Booth, D and Jackson, R (1997) Urbanization of aquatic systems: Degradation thresholds, stormwater detection, and the limits of mitigation, J. of the American Water Resources Association, 335, pp. 1077-1090.
  2. Choi, C, Choi, D, Lee, J and Kim, S (2011) An hybrid approach for designing detention and infiltration-based retentions to promote sound urban hydrologic cycle, J. of Korean Society of Environmental Engineers, 33, pp. 1-8. [Korean Literature] https://doi.org/10.4491/KSEE.2011.33.1.001
  3. Cho, S, Kang, M, Kwon, H, Lee, J and Kim, S (2013) Evaluation of the effectiveness of low impact development practices in an urban area; non-point pollutant removal measures using EPA-SWMM, J. of Korean Society on Water Environment, 29(4), pp. 466-475. [Korean Literature]
  4. Choi, D, Kim, JK, Lee, JK and Kim, S (2011) Optimal volume estimation for non-point source control retention considering spatio-tempornl variation of land surface, J. of Korean Society on Water Quality, 27(1), pp. 9-18. [Korean Literature]
  5. Hammer, T (1972) "Stream and channel enlargement due to urbanization." Water Resources Research, 8(6), pp. 1530-1540. https://doi.org/10.1029/WR008i006p01530
  6. Kim, S, Han, S and Kim, E (2011) "Stochastic modeling of soil water and plant water stress using cumulant expansion theory, Ecohydrology, 4, pp. 94-105. https://doi.org/10.1002/eco.127
  7. Kim, S, Lim, Y, Kim, J, Kang, D, Seo, S and Lee, J (2010) Best site identification for spatially distributed on-site stormwater control devices in an urban drainage system, J. of Korean Society on Water Environment, 29(6) pp. 986-993. [Korean Literature]
  8. Lee, J, Choi, S, Kim, J, Seo., S and Kim, S (2012) Development of a simple distributed hydrologic model for determining optimal installation location and quantifying efficiency of LID devices for reducing non-point sources, J. of the Korean Society of Hazard Mitigation, 12(4), pp. 215-224. [Korean Literature]
  9. Lee, K, Kang, D, Park, M and Kim, S (2014) Study for management of non-point source in Sooyeong river watershed using SWMM, J. of the Korean Society of Hazard Mitigation, 14(2), pp. 327-336. [Korean Literature]
  10. Lee, J, Park, Y, Shin, H, Kim, J and Kim, S (2013) A study on applicability of SUSTAIN in a korean urban catchment, J. of Korean Society on Water Environment, 29(6) pp. 730-738. [Korean Literature]
  11. Palhegyi, G (2010) Designing stormwater controls to promote sustainable ecosystems: Science and application, J. of Hydrologic Engineering, 15(6), pp. 504-511. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000130
  12. Park, M, Lee, J, Park, B and Kim, S (2015) Estimation of Bio retention Design Capacity Using Principal of Diminishing Returns, J. of the Korean Society of Hazard Mitigation, 15(2), pp. 363-368. [Korean Literature] https://doi.org/10.9798/KOSHAM.2015.15.2.363
  13. Rossman, LA (2015) Storm Water Management Model User's Manual Version 5.1", United States Environmental Protection Agency