DOI QR코드

DOI QR Code

연약지반 평가를 위한 MASW탐사와 CPTu 자료의 지구통계학적 복합 분석

Geostatistical Integrated Analysis of MASW and CPTu data for Assessment of Soft Ground

  • 지윤수 (강원대학교 자원에너지시스템공학과) ;
  • 오석훈 (강원대학교 자원에너지시스템공학과) ;
  • 임은상 (한국수자원공사 K-water연구원)
  • Ji, Yoonsoo (Department of Energy and Resources Engineering, Kangwon National University) ;
  • Oh, Seokhoon (Department of Energy and Resources Engineering, Kangwon National University) ;
  • Im, Eunsang (Infrastructure Technology Center, K-Water Institute)
  • 투고 : 2016.08.18
  • 심사 : 2016.11.15
  • 발행 : 2016.11.30

초록

연약지반의 층서 파악을 위해 대상 지역 전체에서 취득되는 다중채널 표면파 탐사(Multichannel Analysis of Surface Wave; MASW)와 지반에 대한 직접적인 정보를 제공하는 피에조콘 관입시험(Piezo Cone Penetration Test; CPTu) 자료를 지구통계학적으로 복합 분석하였다. MASW 자료는 지반 강성도와 밀접한 관계를 갖는 것으로 알려져 있는데, 2개의 측선에 대해 자료를 취득하고 연구 지역 시료의 실내시험을 통해 이를 확인하였다. CPTu는 대상지역 내 6개 지점에서 취득하였고 선단저항($q_c$) 및 간극수압(u) 자료에 지구통계학적 복합 분석을 적용하여 3차원 물성 분포를 확보하였다. 복합 분석은 MASW 자료와 선단저항 및 간극수압의 공간적 상관성에 따라 시뮬레이션 할 수 있는 순차 가우시안 공동 위치 시뮬레이션(Sequential Gaussian Co-Simulation; COSGSIM) 기술을 적용하였다. 분석 결과의 검증을 위해 CPTu 자료 취득 위치와 다른 2개 지점에서 시추가 이루어졌으며, 이 지점에서 SPT N 값과 시추 주상도를 확보할 수 있었고 이 자료를 복합 분석 결과의 지반 공학적 정확도 분석을 위해 사용하였다. 복합 분석을 통해 확보한 3차원 선단저항 및 간극수압 분포도의 신뢰성 검증을 위해 2개의 시추 지역에서 획득한 지반 조사 자료와 비교한 결과, 매우 상관성이 좋은 결과를 확인할 수 있었다.

In order to delineate the soft ground distribution, an integrated geostatistical analysis was performed using the MASW (Multichannel Analysis of Surface Wave) which has the information of overall region and CPTu (Piezo Cone Penetration Test) which provides the direct information of the measuring point of the ground. MASW results were known to have close relationship with the ground stiffness. This correlation was confirmed through the comparison of MASW data obtained from two survey lines to the laboratory test with extracted soil samples. 3D physical property distribution in the study area was acquired by geostatistical integrated analysis with the data of tip resistance ($q_c$) and pore pressure (u) from the CPTu obtained at 6 points within the study area. The integrated analysis was conducted by applying the COSGSIM (Sequential Gaussian Co-Simulation) technology which can carry out the simulation in accordance with the spatial correlation between the MASW results and both tip resistance and pore pressure. Besides the locations of CPTu, borehole investigations were also conducted at two different positions. As a result, the N value of SPT and borehole log could be secured, so these data were used for the analysis of the geotechnical engineering accuracy of the integrated analysis result. For the verification of reliability of the 3D distribution of tip resistance and pore pressure secured through integrated analysis, the geotechnical information gained from the two drilling areas was compared, and the result showed extremely high correlation.

키워드

참고문헌

  1. BSSC, 2003, NEHRP Recommended provision for seismic regulations for new buildings, Part 1-Provison (2003 Edition), Building Safety Council, Washington D.C (2003), 47.
  2. Caers, J., 2011, Modelling uncertainty in the earth sciences, Wiley-Blackwell NJ, USA, 114-116.
  3. Hayashi, K., and Suzuki, H., 2001, Surface wave propagation in two-dimensional models and its application to near-surface Swave velocity delineation, Proceeding of 5th SEGJ International Symposium, Tokyo, Japan, 385-392.
  4. Jung, H. O., 2000, Two dimensional shear wave velocity using the inversion of surface wave, Journal of the Korean Earth Science Society, 21(6), 675-682.
  5. Jung, H. O., 2001, A study on the soft reclaimed lands composed of shallow ocean sediments in Keum river estuary: Two dimensional S wave velocity and resolution obtained by inverting surface waves, Journal of the Korean Earth Science Society, 22(3), 179-185.
  6. Kim, D. S., Bang, E. S., and Seo, W. S., 2003, Evaluation of shear wave velocity profiles by performing uphole test using SPT, Journal of the Korean Geotechnical Society, 19(2), 135-146.
  7. Oh, S., and Han, S. M., 2010, Downscaling of geophysical data for enhanced resolution by geostatistical approach, Journal of Korean Earth Science Society, 31(7), 681-690. https://doi.org/10.5467/JKESS.2010.31.7.681
  8. Park, C. B., Miller, R. D., and Xia, J., 1999, Multi-channel analysis of surface waves, Geophysics, 64(3), 800-808. https://doi.org/10.1190/1.1444590
  9. ParkSEIS/SW, 2015, MASW software. Park seismic LLC, Shelton, CT, USA.
  10. Remy, N., Boucher, A., and Wu, J., 2009, Applied geostatistics with SGeMS : A User's guide, Cambridge University Press, NY, USA.
  11. Rix, G. J., and Mayne, P. W., 1993, G max-qc relationships for clays. ASTM Geotechnical Testing Journal, 16(1), 54-60. https://doi.org/10.1520/GTJ10267J
  12. Simonini, P., and Cola, S., 2000, On the use of the piezocone to predict the maximum stiffness of Venetian soils, Journal of Geotechnical and Geoenvironmental Engineering, 126(4), 378-382. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(378)
  13. Stokoe, K. H., II, Rosenblad, B. L., Bay, J. A., Redpath, B., Diehl, J. G., Steller, R. A., Wong, I. G., Thomas, P. A., and Luebbers, M., 2003, Comparison of Vs profiles from three seismic methods at Yucca mountain, Soil and Rock America 2003, 299-306.
  14. Sun, C. G., Kim, H. J., Jung, J. H., and Jung, G. J., 2006, Synthetic application of seismic piezo-cone penetration test for evaluating shear wave velocity korean soil deposits, Mulli-Tamsa, 9(3), 207-224.